Artificial Intelligence in Urban Planning

Please let me know if you have suggestions for publications to add (tom.sanchez[at]vt.edu).


Bibliography

Abarca-Alvarez, F. J., Campos-Sanchez, F. S., & Reinoso-Bellido, R. (2018). Demographic and dwelling models by artificial intelligence: Urban renewal opportunities in Spanish Coast. International Journal of Sustainable Development and Planning, 13(7), 941–953. https://doi.org/10/gnm5fn

Abdel-Moneim, N. M., & El Seddawy, A. I. (2021). Towards a Better Urban Design in Respect to Environmental Behavior Using Knowledge Discovery. Journal of Southwest Jiaotong University, 56(3), Article 3. https://doi.org/10/gnbkrj

Abduljabbar, R., Dia, H., Liyanage, S., & Bagloee, S. A. (2019). Applications of artificial intelligence in transport: An overview. Sustainability, 11(1), 189. https://doi.org/10/gf4234

Ahmed, S., Hossain, Md. F., Kaiser, M. S., Noor, M. B. T., Mahmud, M., & Chakraborty, C. (2021). Artificial Intelligence and Machine Learning for Ensuring Security in Smart Cities. In C. Chakraborty, J. C.-W. Lin, & M. Alazab (Eds.), Data-Driven Mining, Learning and Analytics for Secured Smart Cities: Trends and Advances (pp. 23–47). Springer International Publishing. https://doi.org/10.1007/978-3-030-72139-8_2

Aithal, B. H., & Ramachandra, T. (2016). Visualization of urban growth pattern in Chennai using geoinformatics and spatial metrics. Journal of the Indian Society of Remote Sensing, 44(4), 617–633. https://doi.org/10/gnbkrc

Alavi, H. S., Churchill, E. F., Wiberg, M., Lalanne, D., Dalsgaard, P., Fatah gen Schieck, A., & Rogers, Y. (2019). Introduction to Human-Building Interaction (HBI) Interfacing HCI with Architecture and Urban Design. https://doi.org/10/gfzv29

Alexander, E. R. (2001). What Do Planners Need to Know? Journal of Planning Education and Research, 20(3), 376–380. https://doi.org/10/c4h5wc

Alexander, E. R. (2014). “Planning” or e-Planning?: Implications for Theory, Education and Practice. International Journal of E-Planning Research (IJEPR), 3(1), 1–15. https://doi.org/10.4018/ijepr.2014010101

ALHARTHI, S., ALHARTHI, A., & ALHARTHI, M. (2019). Sustainable Development Goals In The Kingdom Of Saudi Arabia’s 2030 Vision. WIT Transactions on Ecology and the Environment, 238, 455–467. https://doi.org/10/gnbkrg

Ali, U., & Mahmood, T. (2018). Using Deep Learning to Predict Short Term Traffic Flow: A Systematic Literature Review. In T. Kováčiková, Ľ. Buzna, G. Pourhashem, G. Lugano, Y. Cornet, & N. Lugano (Eds.), Intelligent Transport Systems – From Research and Development to the Market Uptake (pp. 90–101). Springer International Publishing. https://doi.org/10/gpwbc5

Allaert, G., De Sutter, R., Kellens, W., & Vanneuville, W. (2009). Intelligent decision support system based geo-infonnation technology and spatial planning for sustainable water management in Flanders, Belgium.

Allam, S. (2018). The Future of Urban Models in the Big Data and AI Era: A Bibliometric Analysis. Sudhir Allam,” THE FUTURE OF URBAN MODELS IN THE BIG DATA AND AI ERA: A BIBLIOMETRIC ANALYSIS”, International Journal of Creative Research Thoughts (IJCRT), ISSN, 2320–2882.

Allam, Z. (2020). Urban chaos and the AI Messiah. In Cities and the Digital Revolution (pp. 31–60). Springer.

Allam, Z. (2021a). Big Data, Artificial Intelligence and the Rise of Autonomous Smart Cities. In Z. Allam (Ed.), The Rise of Autonomous Smart Cities: Technology, Economic Performance and Climate Resilience (pp. 7–30). Springer International Publishing. https://doi.org/10.1007/978-3-030-59448-0_2

Allam, Z. (2021b). Introducing the Concept of Autonomous City. In Z. Allam (Ed.), The Rise of Autonomous Smart Cities: Technology, Economic Performance and Climate Resilience (pp. 1–6). Springer International Publishing. https://doi.org/10.1007/978-3-030-59448-0_1

Allam, Z. (2021c). On Complexity, Connectivity and Autonomy in Future Cities. In Z. Allam (Ed.), The Rise of Autonomous Smart Cities: Technology, Economic Performance and Climate Resilience (pp. 31–47). Springer International Publishing. https://doi.org/10.1007/978-3-030-59448-0_3

Allam, Z., & Dhunny, Z. A. (2019). On big data, artificial intelligence and smart cities. Cities, 89, 80–91. https://doi.org/10/gf42z5

Allam, Z., & Newman, P. (2018). Redefining the Smart City: Culture, Metabolism and Governance. Smart Cities, 1(1), 4–25. https://doi.org/10/gf42z6

Almahmood, M., & Skov-Petersen, H. (2020). Public Space Public Life 2.0: Agent-based Pedestrian Simulation as a Dynamic Visualisation of Social Life in Urban Spaces. Journal of Digital Landscape Architecture, 305–317.

Al-Ramini, A., Takallou, M. A., Piatkowski, D. P., & Alsaleem, F. (2022). Quantifying changes in bicycle volumes using crowdsourced data. Environment and Planning B: Urban Analytics and City Science, 23998083211066104. https://doi.org/10.1177/23998083211066103

Al-Sayed, K. (2017). Thinking systems in urban design: A prioritised structure model. In Explorations in Urban Design (pp. 195–206). Routledge.

Ameer, S., & Shah, M. A. (2018). Exploiting big data analytics for smart urban planning. 1–5.

Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., Suh, J., Iqbal, S., Bennett, P. N., Inkpen, K., Teevan, J., Kikin-Gil, R., & Horvitz, E. (2019). Guidelines for Human-AI Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–13). Association for Computing Machinery. https://doi.org/10.1145/3290605.3300233

Angelidou, M., Psaltoglou, A., Komninos, N., Kakderi, C., Tsarchopoulos, P., & Panori, A. (2018). Enhancing sustainable urban development through smart city applications. Journal of Science and Technology Policy Management, 9(2), 146–169. https://doi.org/10/gg3gbg

Anttiroiko, A.-V. (2015). Smart planning: The potential of web 2.0 for enhancing collective intelligence in urban planning. In Emerging Issues, Challenges, and Opportunities in Urban E-Planning (pp. 1–32). IGI Global.

Anttiroiko, A.-V., & Caves, R. W. (2014). Urban Planning 3.0: Impact of recent developments of the Web on urban planning. In IT in the public sphere: Applications in administration, government, politics, and planning (pp. 233–257). IGI Global.

Aqib, M., Mehmood, R., Alzahrani, A., & Katib, I. (2020). A Smart Disaster Management System for Future Cities Using Deep Learning, GPUs, and In-Memory Computing. In R. Mehmood, S. See, I. Katib, & I. Chlamtac (Eds.), Smart Infrastructure and Applications: Foundations for Smarter Cities and Societies (pp. 159–184). Springer International Publishing. https://doi.org/10.1007/978-3-030-13705-2_7

Arndt, L. T., Philips, J. W., Cordeiro, A. D., Romano, C. A., & Catai, R. E. (2014). Domain ontology for urban land management. Proceedings of the Institution of Civil Engineers-Urban Design and Planning, 167(2), 58–68. https://doi.org/10/gnm5fp

Arribas-Bel, D., Garcia-López, M.-À., & Viladecans-Marsal, E. (2021). Building(s and) cities: Delineating urban areas with a machine learning algorithm. Journal of Urban Economics, 125, 103217. https://doi.org/10/gh7sm2

As, I., Basu, P., & Talwar, P. (n.d.). Artificial Intelligence in Urban Planning and Design. Retrieved June 6, 2022, from https://www.elsevier.com/books/artificial-intelligence-in-urban-planning-and-design/as/978-0-12-823941-4

Aschwanden, G. D., Haegler, S., Bosché, F., Van Gool, L., & Schmitt, G. (2011). Empiric design evaluation in urban planning. Automation in Construction, 20(3), 299–310. https://doi.org/10/c7r6tw

Athey, S. (2017). Beyond prediction: Using big data for policy problems. Science, 355(6324), 483–485. https://doi.org/10/gf36r2

Athey, S. (2019). The Impact of Machine Learning on Economics. In 21. The Impact of Machine Learning on Economics (pp. 507–552). University of Chicago Press. https://doi.org/10.7208/9780226613475-023

Ayaz, N., & Akay, B. (2020). Smart Municipalities in Tourism: In E. Çeltek (Ed.), Advances in Hospitality, Tourism, and the Services Industry (pp. 391–413). IGI Global. https://doi.org/10.4018/978-1-7998-1989-9.ch018

Baaj, M. H., & Mahmassani, H. S. (1992). Artificial intelligence-based system representation and search procedures for transit route network design. Transportation Research Record, 1358, Article 1358.

Babu, A. M., Kumar, T. S., & Kodati, S. (2021). CONSTRUCTION METHOD OF URBAN PLANNING DEVELOPMENT USING ARTIFICIAL INTELLIGENCE TECHNOLOGY. Design Engineering, 782–792.

Balling, R. J., Taber, J. T., Brown, M. R., & Day, K. (1999). Multiobjective Urban Planning Using Genetic Algorithm. Journal of Urban Planning and Development, 125(2), 86–99. https://doi.org/10/bnm55h

Ballouch, Z., Hajji, R., & Ettarid, M. (2022). Toward a Deep Learning Approach for Automatic Semantic Segmentation of 3D Lidar Point Clouds in Urban Areas. In F. Barramou, E. H. El Brirchi, K. Mansouri, & Y. Dehbi (Eds.), Geospatial Intelligence: Applications and Future Trends (pp. 67–77). Springer International Publishing. https://doi.org/10.1007/978-3-030-80458-9_6

Balmaceda, B., & Fuentes, M. (2016). Cities and methods from complexity science. Journal of Systems Science and Complexity, 29(5), 1177–1186. https://doi.org/10/gg6mrq

Banerjee, S., Chakraborty, C., & Das, D. (2020). An approach towards GIS application in smart city urban planning. In Internet of Things and Secure Smart Environments (pp. 71–110). Chapman and Hall/CRC.

Bao, W., Lianju, N., & Yue, K. (2019). Integration of unsupervised and supervised machine learning algorithms for credit risk assessment. Expert Systems with Applications, 128, 301–315. https://doi.org/10/gmbww3

Baoxing, Q. (2018). Resilient urban design methods and principles based on the complex adaptive system theory. Landscape Architecture Frontiers, 6(4), 42–47. https://doi.org/10/gnm5dp

Baran, G. (2020). The Opportunities and Threats Resulting from Robotic Process Automation in Public Service Development. Zarządzanie Publiczne, 52, 17–27.

Baráth, E., & Futó, I. (1984). A regional planning system based on artificial intelligence concepts. 55(1), 135–154.

Barbanente, A., Borri, D., Esposito, F., Leo, P., Maciocco, G., & Selicato, F. (1992). Automatically acquiring knowledge by digital maps in artificial intelligence planning techniques. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space (pp. 379–401). Springer.

Barbanente, A., Borri, D., & Monno, V. (1997). Problems of Urban Land-Use and Transportation Planning: Cognition and Evaluation Models. In Evaluating Theory-Practice and Urban-Rural Interplay in Planning (pp. 123–139). Springer.

Barbosa Jardim, A., Müh, M., Kondziela, A., & Häusler, A. (2021). Synthetic and Tangible Agents for an Activity-based Urban Planning Tool. 805–815.

Barbosa, L., Pham, K., Silva, C., Vieira, M. R., & Freire, J. (2014). Structured Open Urban Data: Understanding the Landscape. Big Data, 2(3), 144–154. https://doi.org/10/gg2qjc

Barns, S. (2018). Smart cities and urban data platforms: Designing interfaces for smart governance. City, Culture and Society, 12, 5–12. https://doi.org/10/gf65bz

Barredo, J. I., Lavalle, C., & Kasanko, M. (2005). Urban scenario modeling and forecast for sustainable urban and regional planning. In GIS for sustainable development (pp. 349–366). CRC Press.

Barth, T. J., & Arnold, E. (1999). Artificial intelligence and administrative discretion: Implications for public administration. The American Review of Public Administration, 29(4), 332–351. https://doi.org/10/d4jn2p

Batey, P. W. J., & Breheny, M. J. (1978). Methods in Strategic Planning: Part I: A Descriptive Review. The Town Planning Review, 49(3), 259–273. https://doi.org/10/gjnfcv

Batrouni, M., Bertaux, A., & Nicolle, C. (2018). Scenario analysis, from BigData to black swan. Computer Science Review, 28, 131–139. https://doi.org/10/c9nr

Batty, M. (1995). Planning support systems and the new logic of computation. Regional Development Dialogue, 16(1), 1–17.

Batty, M. (2007). Planning support systems: Progress, predictions, and speculations on the shape of things to come. 26.

Batty, M. (2018a). Artificial intelligence and smart cities. https://doi.org/10/gc4n5g

Batty, M. (2018b). Science in Planning: Theory, Methods and Models. In Planning Knowledge and Research. Routledge.

Batty, M. (2021). Planning education in the digital age. Environment and Planning B: Urban Analytics and City Science, 48(2), 207–211. https://doi.org/10/gh5s8h

Batty, M., & Xie, Y. (1994). From Cells to Cities. Environment and Planning B: Planning and Design, 21(7), S31–S48. https://doi.org/10/dnv3zr

Batty, M., & Yeh, T. (1991). The promise of expert systems for urban planning. Computers, Environment and Urban Systems, 15(3), 101–108. https://doi.org/10.1016/0198-9715(91)90001-T

Baumewerd-Ahlmann, A., & Kalinski, J. (1990). Structuring techniques for knowledge-based planning systems in environmental impact assessment. 257–261.

Bazan-Krzywoszańska, A., Lach, R., & Mrówczyńska, M. (2020). City as a System Supported by Artificial Intelligence. Urban and Regional Planning. Special Issue: Management of the City-A Multi-Branch Task, 5(2), 32–39.

Beauregard, R. A. (1990). Bringing the City back In. American Planning Association. Journal of the American Planning Association, 56(2), 210.

Behnisch, M., & Ultsch, A. (2009). Urban data-mining: Spatiotemporal exploration of multidimensional data. Building Research & Information, 37(5–6), 520–532. https://doi.org/10/dh5g7d

Behzadi, S., & Alesheikh, A. A. (2013). Introducing a novel model of belief–desire–intention agent for urban land use planning. Engineering Applications of Artificial Intelligence, 26(9), 2028–2044. https://doi.org/10/f5cf33

Belhadi, A., Djenouri, Y., Srivastava, G., & Lin, J. C.-W. (2021). SS-ITS: secure scalable intelligent transportation systems. The Journal of Supercomputing, 1–17.

Belkaid, A., & Abdelkader Ben Saci, I. H. (2021). Human-Computer Interaction for Urban Rules Optimization.

Ben-David, A., & Frank, E. (2009). Accuracy of machine learning models versus “hand crafted” expert systems – A credit scoring case study. Expert Systems with Applications, 36(3, Part 1), 5264–5271. https://doi.org/10/bwbxfq

Bennett, A. (2021). Autonomous vehicle driving algorithms and smart mobility technologies in big data-driven transportation planning and engineering. Contemporary Readings in Law and Social Justice, 13(1), 20–29. https://doi.org/10/gnbkrh

Berta, M., Caneparo, L., Montuori, A., & Rolfo, D. (2016). Semantic urban modelling: Knowledge representation of urban space. Environment and Planning B: Planning and Design, 43(4), 610–639. https://doi.org/10/f8vvxj

Bibri, S. E. (2021). The core academic and scientific disciplines underlying data-driven smart sustainable urbanism: An interdisciplinary and transdisciplinary framework. Computational Urban Science, 1(1), 1. https://doi.org/10/gjn4jv

Bickley, S. J., Chan, H. F., & Torgler, B. (2022). Artificial intelligence in the field of economics. Scientometrics, 127(4), 2055–2084. https://doi.org/10.1007/s11192-022-04294-w

Bielli, M., Ambrosino, G., & Boero, M. (1994). Artificial intelligence applications to traffic engineering. Vsp.

Bienvenido-Huertas, D., Farinha, F., Oliveira, M. J., Silva, E. M. J., & Lança, R. (2020). Comparison of artificial intelligence algorithms to estimate sustainability indicators. Sustainable Cities and Society, 63, 102430. https://doi.org/10/gmdgv3

Biswas, S., Chen, F., Sistrunk, A., Muthiah, S., Chen, Z., Self, N., Lu, C.-T., & Ramakrishnan, N. (2020). Geospatial Clustering for Balanced and Proximal Schools. Proceedings of the AAAI Conference on Artificial Intelligence, 34(09), 13358–13365. https://doi.org/10/gpwbfz

Blecic, I., Cecchini, A., & Trunfio, G. A. (2009). A Multi-Agent Geosimulation Infrastructure for Planning. In B. Murgante, G. Borruso, & A. Lapucci (Eds.), Geocomputation and Urban Planning (pp. 237–253). Springer. https://doi.org/10.1007/978-3-540-89930-3_14

Boeing, G., Batty, M., Jiang, S., & Schweitzer, L. (2021). Urban Analytics: History, Trajectory, and Critique. 20.

Bolívar, M. P. R., & Meijer, A. J. (2016). Smart Governance: Using a Literature Review and Empirical Analysis to Build a Research Model. Social Science Computer Review, 34(6), 673–692. https://doi.org/10.1177/0894439315611088

Borri, D., & Camarda, D. (2006). Visualizing space-based interactions among distributed agents: Environmental planning at the inner-city scale. 182–191.

Borri, D., & Camarda, D. (2009). The cooperative conceptualization of urban spaces in AI-assisted environmental planning. 197–207.

Borri, D., & Camarda, D. (2013). Modelling space perception in urban planning: A cognitive ai-based approach. In Contemporary Challenges and Solutions in Applied Artificial Intelligence (pp. 3–9). Springer.

Borri, D., Camarda, D., & De Liddo, A. (2008). Multi-agent Environmental Planning: A Forum-based Case Study in Italy. Planning, Practice & Research, 23(2), 211–228. https://doi.org/10/bxs4c5

Borri, D., Camarda, D., & Pluchinotta, I. (2014). Planning for the microclimate of urban spaces: Notes from a multi-agent approach. 179–182.

Boschetti, F. (2016). Models and people: An alternative view of the emergent properties of computational models. Complexity, 21(6), 202–213. https://doi.org/10/gpwbf8

Boukerche, A., Tao, Y., & Sun, P. (2020). Artificial intelligence-based vehicular traffic flow prediction methods for supporting intelligent transportation systems. Computer Networks, 182, 107484. https://doi.org/10/gncqpw

Boulange, C., Pettit, C., Gunn, L. D., Giles-Corti, B., & Badland, H. (2018). Improving planning analysis and decision making: The development and application of a Walkability Planning Support System. Journal of Transport Geography, 69, 129–137. https://doi.org/10.1016/j.jtrangeo.2018.04.017

Bradley, J., Hefele, J., & Dolin, R. M. (1994). Transportation planning: A virtual reality. Los Alamos National Lab., NM (United States).

Brauneis, R., & Goodman, E. P. (2018). Algorithmic Transparency for the Smart City. Yale Journal of Law and Technology, 20, 103.

Brintha, V. P., Rekha, R., Nandhini, J., Sreekaarthick, N., Ishwaryaa, B., & Rahul, R. (2020). Automatic Classification of Solid Waste Using Deep Learning. In L. A. Kumar, L. S. Jayashree, & R. Manimegalai (Eds.), Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications (pp. 881–889). Springer International Publishing. https://doi.org/10/gpwbc6

Brynjolfsson, E., & McAfee, A. (n.d.). Race Against the Machine: How the Digital Revolution is Accelerating. Retrieved December 22, 2021, from https://books.google.com/books?hl=en&lr=&id=6O-MBAAAQBAJ&oi=fnd&pg=PT13&dq=Race+against+the+machine:+How+the+digital+revolution+is+accelerating+innovation&ots=5UeiiMhHC7&sig=awfVeGxsISb7gEJYd6Fg0Lfbpnk#v=onepage&q=Race%20against%20the%20machine%3A%20How%20the%20digital%20revolution%20is%20accelerating%20innovation&f=false

Buchanan, B. (n.d.). Can machine learning offer anything to expert systems? 4.

Cai, C. J., Winter, S., Steiner, D., Wilcox, L., & Terry, M. (2019). “Hello AI”: Uncovering the Onboarding Needs of Medical Practitioners for Human-AI Collaborative Decision-Making. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 104:1-104:24. https://doi.org/10/gh7kqn

Calixto, V., Canuto, R., Noronha, M., Afrooz, A., Gu, N., & Celani, G. (2021). A layered approach for the data-driven design of smart cities.

Campo, M. D., Manninger, S., & Carlson, A. (2020). Hallucinating cities: A posthuman design method based on neural networks. 1–8.

Caneparo, L., Rolfo, D., Bonavero, F., Van Reusel, H., Verbeke, J., Hudson-Smith, A., & Karadimitriou, N. (2017). Semantic Analysis of Public Spaces in Brussels, London and Turin living labs: A Taxonomy of Interventions. 101–112.

Canter, D., Wigan, M., Openshaw, S., & Flemming, U. (1989). Psychology of Architectural Design, Desktop Planning: Microcomputer Applications for Infrastructure and Services Planning and Management, Thinking Machines: The Search for Artificial Intelligence, Architecture: Formal Approach. https://doi.org/10/gnbkrz

Cantergiani, C., & Gómez Delgado, M. (2018). Urban land allocation model of territorial expansion by urban planners and housing developers. Environments, 5(1), 5. https://doi.org/10/gnbkq9

Carvalho, A. (2010). Decision Support Systems for Urban and Regional Planning. In Environmental Systems-Volume III (p. 207). EOLSS Publications.

Celani, G., & de Carvalho Frajndlich, R. U. (2016). From prototypical to prototyping: Mass-customization versus 20th century utopias in architecture and urban design. PARC Pesquisa Em Arquitetura e Construção, 7(3), 160–169. https://doi.org/10/gnm5dj

Ceylan, S. (2021). Artificial Intelligence in Architecture: An Educational Perspective. 100–107.

Charlton, J., Giddings, B., & Horne, M. (2008). A survey of computer software for the urban design process.

Chaturvedi, V., & de Vries, W. T. (2021). Machine Learning Algorithms for Urban Land Use Planning: A Review. Urban Science, 5(3), 68. https://doi.org/10/gnbkrn

Chatzimparmpas, A., Martins, R. M., Jusufi, I., & Kerren, A. (2020). A survey of surveys on the use of visualization for interpreting machine learning models. Information Visualization, 19(3), 207–233. https://doi.org/10/gjbrmg

Chayaamor-Heil, N. (2018). The Impact of Nature inspired algorithms on Biomimetic approach in Architectural and Urban design. 97–109.

Chen, G., & Wang, J. (2012). Design and Application of Computing Platform of Two Swarm Intelligence Optimization Algorithmsfor the Environmental Planning and Management Course Based on MATLAB GUI. 109–115.

Chen, J., Huang, S., BalaMurugan, S., & Tamizharasi, G. (2021). Artificial intelligence based e-waste management for environmental planning. Environmental Impact Assessment Review, 87, 106498. https://doi.org/10/ghqv8p

Chen, J., & Xiang, X. (2018). Global Urban Design Research from 2007 to 2017: A Systematic Research Review. Journal of Landscape Research, 10(2), 45–48.

Chen, S. H., Jakeman, A. J., & Norton, J. P. (2008). Artificial intelligence techniques: An introduction to their use for modelling environmental systems. Mathematics and Computers in Simulation, 78(2–3), 379–400. https://doi.org/10/dj4d9j

Chen, W., Guo, F., & Wang, F.-Y. (2015). A Survey of Traffic Data Visualization. IEEE Transactions on Intelligent Transportation Systems, 16(6), 2970–2984. https://doi.org/10/f72r2h

Cheng, J. Y., Xiang, C., & Ma, Y. (2020). AI Application on LID Stormwater Management and Urban Planning in Guam, USA, and Southern China, PRC. 188–200.

Chirkin, A., & König, R. (2016). Concept of Interactive Machine Learning in Urban Design Problems: Proceedings. https://doi.org/10/gnm5fm

Cho, K.-J. K. and S.-B. (n.d.). A Comprehensive Overview of the Applications of Artificial Life. Retrieved March 31, 2021, from https://click.endnote.com/viewer?doi=10.1162%2F106454606775186455&token=WzEwNjM0NzIsIjEwLjExNjIvMTA2NDU0NjA2Nzc1MTg2NDU1Il0.gg2UBYtUgw5PTLEnw7M4-OkzMTU

Choi, K. (1993). The implementation of an integrated transportation planning model with GIS and expert systems for interactive transportation planning.

Christmann, G. B., Singh, A., Stollmann, J., & Bernhardt, C. (2020). Visual Communication in Urban Design and Planning: The Impact of Mediatisation (s) on the Construction of Urban Futures. Urban Planning, 5(2), 1–9. https://doi.org/10/gnm5dr

Chui, K. T., Lytras, M. D., & Visvizi, A. (2018). Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption. Energies, 11(11), 2869. https://doi.org/10/gmdgvx

Chupin, J.-P. (2011). Judgement by design: Towards a model for studying and improving the competition process in architecture and urban design. Scandinavian Journal of Management, 27(1), 173–184. https://doi.org/10/bxrjjs

Clark, A. (2020). Big Data-driven Transportation Planning and Engineering: Smart Urbanism, Autonomous Vehicle Algorithms, and Network Connectivity Systems. Contemporary Readings in Law and Social Justice, 12(2), 70–78. https://doi.org/10/gnbkrp

Cohen, M. C., Fiszer, M.-D., Ratzon, A., & Sasson, R. (2021). Incentivizing Commuters to Carpool: A Large Field Experiment with Waze. Manufacturing & Service Operations Management. https://doi.org/10/gnrsq6

Cohn, M. (n.d.). User Stories and User Story Examples by Mike Cohn. Mountain Goat Software. Retrieved July 27, 2021, from https://www.mountaingoatsoftware.com/agile/user-stories

Coiner, J. C. (1988). Information systems applications in regional planning (trends, issues, and problems in developing countries).

Combes, P.-P., Gobillon, L., & Zylberberg, Y. (2021). Urban economics in a historical perspective: Recovering data with machine learning. Regional Science and Urban Economics, 103711. https://doi.org/10/gpwbdh

Conway, J., & Architecture, B. A. (n.d.). Artificial Intelligence and Machine Learning: Current Applications in Real Estate. 117.

Cook, D. J., Augusto, J. C., & Jakkula, V. R. (2009). Ambient intelligence: Technologies, applications, and opportunities. Pervasive and Mobile Computing, 5(4), 277–298. https://doi.org/10.1016/j.pmcj.2009.04.001

Cooke, N. J. (1994). Varieties of knowledge elicitation techniques. International Journal of Human-Computer Studies, 41(6), 801–849. https://doi.org/10/d84gp4

Coppola, C., & Ceso, A. (2000). Computer Aided Design and Artificial Intelligence in Urban and Architectural Design.

Cortès, U., Sànchez-Marrè, M., Ceccaroni, L., R-Roda, I., & Poch, M. (2000). Artificial intelligence and environmental decision support systems. Applied Intelligence, 13(1), 77–91.

Coughlin, J. F., & Brady, S. (2019). Planning, Designing, and Engineering Tomorrow’s User-Centered, Age-Ready Transportation System. The Bridge, 49(1), Article 1.

Crawford, K. (2021a). Classification. In The Atlas of AI (pp. 123–149). Yale University Press. https://doi.org/10.2307/j.ctv1ghv45t.7

Crawford, K. (2021b). Conclusion.: Power. In The Atlas of AI (pp. 211–227). Yale University Press. https://doi.org/10.2307/j.ctv1ghv45t.10

Crawford, K. (2021c). Data. In The Atlas of AI (pp. 89–121). Yale University Press. https://doi.org/10.2307/j.ctv1ghv45t.6

Crawford, K. (2021d). Introduction. In The Atlas of AI (pp. 1–21). Yale University Press. https://doi.org/10.2307/j.ctv1ghv45t.3

Cugurullo, F. (2020). Urban Artificial Intelligence: From Automation to Autonomy in the Smart City. Frontiers in Sustainable Cities, 2, 38. https://doi.org/10/gh7wxj

Cugurullo, F., Acheampong, R. A., Gueriau, M., & Dusparic, I. (2020). The transition to autonomous cars, the redesign of cities and the future of urban sustainability. Urban Geography, 1–27.

Damiani, G., Nurchis, M., Sapienza, M., & Jevtic, M. (2021). Artificial Intelligence and Urban health: A step forward to the achievement of SDGs. European Journal of Public Health, 31(Supplement_3), ckab164-731. https://doi.org/10/gnbkqx

Daniel, C., & Pettit, C. (2021). Digital disruption and planning – use of data and digital technology by professional planners, and perceptions of change to planning work. Australian Planner, 57(1), 50–64. https://doi.org/10.1080/07293682.2021.1920995

Das, A. (2021). Urban Planning, Information Technology and Artificial Intelligence: The Theory of Evolution.

Davis, J. R., & Grant, I. W. (1990). ADAPT: A Knowledge-Based Decision Support System for Producing Zoning Schemes. In T. J. Kim, L. L. Wiggins, & J. R. Wright (Eds.), Expert Systems: Applications to Urban Planning (pp. 67–85). Springer. https://doi.org/10.1007/978-1-4612-3348-0_4

Davis, Jr., Compagnoni, P., & Nanninga, P. (1987). Roles for knowledge-based systems in environmental planning. Environment and Planning B: Planning and Design, 14(3), 239–254. https://doi.org/10/cmp32c

Davis, R. L. (2019). Memos and Mega Projects: Applying Planners’ Perceptions of Their Software to a Framework for the Future of Planning [Master of Urban Planning, San Jose State University]. https://doi.org/10.31979/etd.96pf-jkut

Decker, J. (1992). Computers as tools for analysis of urban spaces: Technological support for comprehensive urban design theories. Cities, 9(3), 170–176. https://doi.org/10/dpvhb9

Dennemark, M., Schneider, S., Koenig, R., Abdulmawla, A., & Donath, D. (2017). Towards a modular design strategy for urban masterplanning-Experiences from a parametric urban design studio on emerging cities in Ethiopia.

Di Lecce, V., & Amato, A. (2011). Route planning and user interface for an advanced intelligent transport system. IET Intelligent Transport Systems, 5(3), 149–158. https://doi.org/10/b26hwm

Dodge, J., Liao, Q. V., Zhang, Y., Bellamy, R. K. E., & Dugan, C. (2019). Explaining models: An empirical study of how explanations impact fairness judgment. Proceedings of the 24th International Conference on Intelligent User Interfaces, 275–285. https://doi.org/10/ggcpsp

Doraiswamy, H., Freire, J., Lage, M., Miranda, F., & Silva, C. (2018). Spatio-Temporal Urban Data Analysis: A Visual Analytics Perspective. IEEE Computer Graphics and Applications, 38(5), 26–35. https://doi.org/10/gfw9nr

Dresner, K., & Stone, P. (2008). A Multiagent Approach to Autonomous Intersection Management. Journal of Artificial Intelligence Research, 31, 591–656. https://doi.org/10/gfghfx

Duarte, F., & Ratti, C. (2020). Data (are) Matter: Data, Technology, and Urban Design. In Data, Matter, Design (pp. 60–69). Routledge.

Dudley, J. J., & Kristensson, P. O. (2018). A Review of User Interface Design for Interactive Machine Learning. ACM Transactions on Interactive Intelligent Systems, 8(2), 8:1-8:37. https://doi.org/10/ggd95k

Dueker, K. J. (1982). Urban planning uses of computing. Computers, Environment and Urban Systems, 7(1), 59–64. https://doi.org/10/c4d65j

Duncan, C., Cunningham, J., Wang, A., & Kennedy, A. (2021). Urban Planning Optimization via “Cities: Skylines.”

Dunne, C., Skelton, C., Diamond, S., Meirelles, I., & Martino, M. (2016). Quantitative, Qualitative, and Historical Urban Data Visualization Tools for Professionals and Stakeholders. In N. Streitz & P. Markopoulos (Eds.), Distributed, Ambient and Pervasive Interactions (pp. 405–416). Springer International Publishing. https://doi.org/10/gpwbf2

Dyckman, J. W. (1963). The Scientific World of the City Planners. American Behavioral Scientist, 6(6), 40–44. https://doi.org/10/bmn7h3

Eirinaki, M., Dhar, S., Mathur, S., Kaley, A., Patel, A., Joshi, A., & Shah, D. (2018). A building permit system for smart cities: A cloud-based framework. Computers, Environment and Urban Systems, 70. https://doi.org/10/gdt442

El-Gayar, O. F., & Tandekar, K. (2006). An IDSS for Regional Aquaculture Planning. In Intelligent Decision-making Support Systems (pp. 199–218). Springer.

Elizalde-Ramírez, F., Nigenda, R. S., Martínez-Salazar, I. A., & Ríos-Solís, Y. Á. (2019). Travel Plans in Public Transit Networks Using Artificial Intelligence Planning Models. Applied Artificial Intelligence, 33(5), 440–461. https://doi.org/10/gnbkqq

Elsawah, S. (n.d.). Eight grand challenges in socio-environmental systems modeling. Retrieved December 21, 2021, from https://click.endnote.com/viewer?doi=10.18174%2Fsesmo.2020a16226&token=WzEwNjM0NzIsIjEwLjE4MTc0L3Nlc21vLjIwMjBhMTYyMjYiXQ.ZCpjFIHaD6ceDYPSRhN4tWzpeOE

Engin, Z., van Dijk, J., Lan, T., Longley, P. A., Treleaven, P., Batty, M., & Penn, A. (2020). Data-driven urban management: Mapping the landscape. Journal of Urban Management, 9(2), 140–150. https://doi.org/10/ghwvrh

Esposito, F., Lanza, A., Malerba, D., & Semeraro, G. (1997). Machine learning for map interpretation: An intelligent tool for environmental planning. Applied Artificial Intelligence, 11(7–8), 673–696. https://doi.org/10/d5ws94

EuropIA International Conference on the Application of Artificial Intelligence, R., and Image Processing to Architecture, Building Engineering, Civil Engineering, Urban Design, and Urban Planning (4th :. 1993 :. Delft, Netherlands), Beheshti, M. R. (Reza R. ), & Zreik, K. (1993). Advanced technologies: Architecture, planning, civil engineering. Elsevier. http://www.gbv.de/dms/bowker/toc/9780444815668.pdf

Exner, J.-P., Nalbach, O., & Werth, D. (2020). Monitoring Street Infrastructures with Artificial Intelligence. 589–597.

Ezzat, M. (2020). A Framework for a Comprehensive Conceptualization of Urban Constructs-SpatialNet and SpatialFeaturesNet for computer-aided creative urban design.

Faghri, A., & Hua, J. (n.d.). Evaluation of Artificial Neural Network Applications in Transportation Engineering. 10.

Falco, G. (2019). Participatory AI: Reducing AI Bias and Developing Socially Responsible AI in Smart Cities. 154–158.

Feng, S., & Xu, L. D. (1999). Hybrid artificial intelligence approach to urban planning. Expert Systems, 16(4), 248–261. https://doi.org/10.1111/1468-0394.00117

Feng, T., Truong, Q.-T., Nguyen, D. T., Koh, J. Y., Yu, L.-F., Binder, A., & Yeung, S.-K. (2018). Urban Zoning Using Higher-Order Markov Random Fields on Multi-View Imagery Data. In V. Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer Vision – ECCV 2018 (Vol. 11212, pp. 627–644). Springer International Publishing. https://doi.org/10.1007/978-3-030-01237-3_38

Ferrara, E., Fragale, L., Fortino, G., Song, W., Perra, C., Di Mauro, M., & Liotta, A. (2019). An AI Approach to Collecting and Analyzing Human Interactions With Urban Environments. IEEE Access, 7, 141476–141486. https://doi.org/10/gnbkq8

Ferreira, N., Lage, M., Doraiswamy, H., Vo, H., Wilson, L., Werner, H., Park, M., & Silva, C. (2015). Urbane: A 3D framework to support data driven decision making in urban development. 2015 IEEE Conference on Visual Analytics Science and Technology (VAST), 97–104. https://doi.org/10/gpwbf3

Findikaki, I. (1990). SISES: An Expert System for Site Selection. In T. J. Kim, L. L. Wiggins, & J. R. Wright (Eds.), Expert Systems: Applications to Urban Planning (pp. 125–132). Springer. https://doi.org/10.1007/978-1-4612-3348-0_7

Flook, R., Marshall, D., Staniforth, R., & Richards, A. (2003). Greenfields: An Educational Interactive Rural Town Planning Simulator. 757–760.

Foster, S., & Brostoff, J. (2016). Digital doppelgängers: Converging technologies and techniques in 3D world modeling, video game design and urban design. In Media Convergence Handbook-Vol. 2 (pp. 175–189). Springer.

García, J., Florez, J. E., Torralba, Á., Borrajo, D., López, C. L., García-Olaya, Á., & Sáenz, J. (2013). Combining linear programming and automated planning to solve intermodal transportation problems. European Journal of Operational Research, 227(1), 216–226. https://doi.org/10/gj5pv4

Geertman, S. (2006). Potentials for Planning Support: A Planning-Conceptual Approach. Environment and Planning B: Planning and Design, 33(6), 863–880. https://doi.org/10.1068/b31129

Geertman, S. (2017). PSS: Beyond the implementation gap. Transportation Research Part A: Policy and Practice, 104, 70–76. https://doi.org/10.1016/j.tra.2016.10.016

Geertman, S., Allan, A., Zhan, Q., & Pettit, C. (2019). Computational Urban Planning and Management for Smart Cities: An Introduction. In S. Geertman, Q. Zhan, A. Allan, & C. Pettit (Eds.), Computational Urban Planning and Management for Smart Cities (pp. 1–14). Springer International Publishing. https://doi.org/10.1007/978-3-030-19424-6_1

Geertman, S., & Stillwell, J. (2004). Planning support systems: An inventory of current practice. Computers, Environment and Urban Systems, 28(4), 291–310. https://doi.org/10.1016/S0198-9715(03)00024-3

Geertman, S., & Stillwell, J. (2020). Planning support science: Developments and challenges. Environment and Planning B: Urban Analytics and City Science, 47(8), 1326–1342. https://doi.org/10/gg4q86

Geertman, S., Zhan, Q., Allan, A., & Pettit, C. (2019). Computational Urban Planning and Management for Smart Cities. Springer.

Gennatas, E. D., Friedman, J. H., Ungar, L. H., Pirracchio, R., Eaton, E., Reichmann, L. G., Interian, Y., Luna, J. M., Simone, C. B., Auerbach, A., Delgado, E., Laan, M. J. van der, Solberg, T. D., & Valdes, G. (2020). Expert-augmented machine learning. Proceedings of the National Academy of Sciences, 117(9), 4571–4577. https://doi.org/10/ghbs9p

Gero, J. S., & Sudweeks, F. (1989). Artificial Intelligence in design. Springer.

Ghermandi, A., Depietri, Y., & Sinclair, M. (2022). In the AI of the beholder: A comparative analysis of computer vision-assisted characterizations of human-nature interactions in urban green spaces. Landscape and Urban Planning, 217, 104261. https://doi.org/10/gnbkr3

Gil, J. (2020). City Information Modelling: A Conceptual Framework for Research and Practice in Digital Urban Planning. Built Environment, 46(4), 501–527. https://doi.org/10/ghqp88

Glaeser, E., Kourtit, K., & Nijkamp, P. (2021). New urban challenges: Shared spaces in smart places – Overview and positioning. Land Use Policy, 111, 105672. https://doi.org/10/gpwbf5

Goldberg, M. A. (1977). Simulating Cities: Process, Product, and Prognosis. Journal of the American Institute of Planners, 43(2), 148–157. https://doi.org/10/d4rqkc

Goodspeed, R. (2015). Smart cities: Moving beyond urban cybernetics to tackle wicked problems: Figure 1. Cambridge Journal of Regions, Economy and Society, 8(1), 79–92. https://doi.org/10.1093/cjres/rsu013

Goodwin, S., Meier, S., Bartram, L., Godwin, A., Nagel, T., & Dörk, M. (2021). Unravelling the Human Perspective and Considerations for Urban Data Visualization. 2021 IEEE 14th Pacific Visualization Symposium (PacificVis), 126–130. https://doi.org/10/gpwbfx

Gora, P. (2019). Designing urban areas using traffic simulations, artificial intelligence and acquiring feedback from stakeholders. Transportation Research Procedia, 41. https://doi.org/10/gnm5ds

Graells-Garrido, E., Peña-Araya, V., & Bravo, L. (2020). Adoption-driven data science for transportation planning: Methodology, case study, and lessons learned. Sustainability, 12(15), 6001. https://doi.org/10/gmzkp5

Gün, A., Demir, Y., & Pak, B. (2020). Urban design empowerment through ICT-based platforms in Europe. International Journal of Urban Sciences, 24(2), 189–215. https://doi.org/10/gnm5fk

Hadjimichael, A., Comas, J., & Corominas, L. (2016). Do machine learning methods used in data mining enhance the potential of decision support systems? A review for the urban water sector. AI Communications, 29(6), 747–756. https://doi.org/10/gddvxj

Hagenauer, J., & Helbich, M. (2017). A comparative study of machine learning classifiers for modeling travel mode choice. Expert Systems with Applications, 78, 273–282. https://doi.org/10/gdwsm9

Haldorai, A., Ramu, A., & Murugan, S. (2019a). Artificial Intelligence and Machine Learning for Future Urban Development. In A. Haldorai, A. Ramu, & S. Murugan (Eds.), Computing and Communication Systems in Urban Development: A Detailed Perspective (pp. 91–113). Springer International Publishing. https://doi.org/10.1007/978-3-030-26013-2_5

Haldorai, A., Ramu, A., & Murugan, S. (2019b). Machine Learning and Big Data for Smart Generation. In A. Haldorai, A. Ramu, & S. Murugan (Eds.), Computing and Communication Systems in Urban Development: A Detailed Perspective (pp. 185–203). Springer International Publishing. https://doi.org/10.1007/978-3-030-26013-2_9

Haldorai, A., Ramu, A., & Murugan, S. (2019c). Mobile and Pervasive Computing for Urban Development. In A. Haldorai, A. Ramu, & S. Murugan, Computing and Communication Systems in Urban Development (pp. 1–26). Springer International Publishing. https://doi.org/10.1007/978-3-030-26013-2_1

Han, S.-Y., & Kim, T. J. (1989). Can Expert Systems Help with Planning? Journal of the American Planning Association, 55(3), 296–308. https://doi.org/10.1080/01944368908975417

Han, S.-Y., & Kim, T. J. (1990a). ESSAS: Expert System for Site Analysis and Selection. In T. J. Kim, L. L. Wiggins, & J. R. Wright (Eds.), Expert Systems: Applications to Urban Planning (pp. 145–158). Springer. https://doi.org/10.1007/978-1-4612-3348-0_9

Han, S.-Y., & Kim, T. J. (1990b). Intelligent urban information systems: Review and prospects. Expert Systems: Applications to Urban Planning, 241–264.

Harris, B. (n.d.). The city of the future: The problem of optimal design | SpringerLink. Retrieved April 18, 2021, from https://link.springer.com/article/10.1007%2FBF01944050

Hashemi, R. R., Le Blanc, L. A., Rucks, C. T., & Shearry, A. (1995). A neural network for transportation safety modeling. Expert Systems with Applications, 9(3), 247–256. https://doi.org/10/d92hcf

Hawas, M. A. (2017). Are We Intentionally Limiting Urban Planning and Intelligence? A Causal Evaluative Review and Methodical Redirection for Intelligence Systems. IEEE Access, 5, 13253–13259. https://doi.org/10.1109/ACCESS.2017.2725138

Hayes, B., Kamrowska-Zaluska, D., Petrovski, A., & Jiménez-Pulido, C. (2021). State of the Art in Open Platforms for Collaborative Urban Design and Sharing of Resources in Districts and Cities. Sustainability, 13(9), 4875. https://doi.org/10/gmsgsz

He, J., & Zheng, H. (2021). Prediction of crime rate in urban neighborhoods based on machine learning. Engineering Applications of Artificial Intelligence, 106, 104460. https://doi.org/10/gnbkq6

He, T. (2020). The Construction Method of Optimizing System of Urban Planning Decision Making System Based on a New Generation of Artificial Intelligence Technology. 401–404.

He, W., & Yang, X. (2019). Artificial intelligence design, from research to practice. 189–198.

Heer, J., Bostock, M., & Ogievetsky, V. (2010). A tour through the visualization zoo. Communications of the ACM, 53(6), 59–67. https://doi.org/10/dn9tzf

Heer, J., & Shneiderman, B. (2012). Interactive Dynamics for Visual Analysis: A taxonomy of tools that support the fluent and flexible use of visualizations. Queue, 10(2), 30–55. https://doi.org/10/gk42sr

Heidaripak, S. (2021). PREDICTION OF PUBLIC BUS TRANSPORTATION PLANNING BASED ON PASSENGER COUNT AND TRAFFIC CONDITIONS.

Heikkila, E. J., & Blewett, E. J. (1992). Using Expert Systems to Check Compliance with Municipal Building Codes. Journal of the American Planning Association, 58(1), 72–80. https://doi.org/10/b5nbcz

Heikkila, E. J., Moore, J. E., & Kim, T. J. (1990). Future Directions for EGIS: Applications to Land Use and Transportation Planning. In T. J. Kim, L. L. Wiggins, & J. R. Wright (Eds.), Expert Systems: Applications to Urban Planning (pp. 225–240). Springer. https://doi.org/10.1007/978-1-4612-3348-0_14

Hersperger, A. M., & Fertner, C. (2021). Digital plans and plan data in planning support science. Environment and Planning B: Urban Analytics and City Science, 48(2), 212–215. https://doi.org/10/gh5s8g

Hesam Hafezi, M., Sultana Daisy, N., Millward, H., & Liu, L. (2021). Framework for development of the Scheduler for Activities, Locations, and Travel (SALT) model. Transportmetrica A: Transport Science, 0(0), 1–33. https://doi.org/10/gpwbf6

Hohman, F., Kahng, M., Pienta, R., & Chau, D. H. (2019). Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers. IEEE Transactions on Visualization and Computer Graphics, 25(8), 2674–2693. https://doi.org/10/gg6r76

Hollander, J. B., Potts, R., Hartt, M., & Situ, M. (2020). The Role of Artificial Intelligence in Community Planning. International Journal of Community Well-Being, 3(4), 507–521. https://doi.org/10/gh7wxm

Hsu, C.-C., & Chen, C.-Y. (2003). Regional load forecasting in Taiwan––applications of artificial neural networks. Energy Conversion and Management, 44(12), 1941–1949. https://doi.org/10/czzbww

Hu, M., Li, G., Liu, X., Wu, B., Wang, Y., Wu, Z., & Zhang, Q. (2021). Intelligent Engineering Construction Management: Long-Distance Construction Management. In K. Lyu, M. Hu, J. Du, & V. Sugumaran (Eds.), Advances in Computational Intelligence and Robotics (pp. 162–189). IGI Global. https://doi.org/10.4018/978-1-7998-5024-3.ch008

Hu, W.-C., Wu, H.-T., Cho, H.-H., & Tseng, F.-H. (2020). Optimal route planning system for logistics vehicles based on artificial intelligence. Journal of Internet Technology, 21(3), 757–764.

Hua, J. (2008). Study on Knowledge Acquisition Techniques. 2008 Second International Symposium on Intelligent Information Technology Application, 1, 181–185. https://doi.org/10/c99k53

Huang, J., & Koroteev, D. D. (2021). Artificial intelligence for planning of energy and waste management. Sustainable Energy Technologies and Assessments, 47, 101426. https://doi.org/10/gnbkr2

Huang, L. (2021). Visual Interactive Urban Design in Commemorative Public Spaces.

Huang, T., Dang, A., Cheng, H., Peng, X., & Zhu, Z. (2010). Digital urban planning oriented data warehouse constructing supported by GIS: Taking Greater Beijing regional planning as a case. 1–5.

Iliopoulou, C., & Kepaptsoglou, K. (2019). Combining ITS and optimization in public transportation planning: State of the art and future research paths. European Transport Research Review, 11(1), 27. https://doi.org/10/gmdn2x

Ingaruca, M. (2019). Synergies of radical paradigms and emerging technologies in knowledge production for transforming the modernist urban design. A focus on artificial intelligence, extended reality and sensor technology.

International Conference on Design & Decision Support Systems in Architecture and Urban Planning (7th : 2004 : Sint-Michielsgestel, N., Leeuwen, J. van, & Timmermans, H. J. P. (2004). Recent advances in design and decision support systems in architecture and urban planning. Kluwer. http://catdir.loc.gov/catdir/toc/fy051/2004051584.html

Ismail, A. M. (n.d.). THE END OF URBAN PLANNERS?

Iyer, L. S. (2021). AI enabled applications towards intelligent transportation. Transportation Engineering, 5, 100083. https://doi.org/10/gmnnc3

Jain, K. (2011). A Review Study On Urban Planning & Artificial Intelligence. Artificial Intelligence, 1(5), 4.

Jain, V., Luthra, N., & Saini, D. (2021). Digital Twin Technology: An Evaluation. In Digital Twin Technology. CRC Press.

Jannach, D., Jugovac, M., & Lerche, L. (2016). Supporting the Design of Machine Learning Workflows with a Recommendation System. ACM Transactions on Interactive Intelligent Systems, 6(1), 8:1-8:35. https://doi.org/10/gpwbfv

Jha, A. K., Ghimire, A., Thapa, S., Jha, A. M., & Raj, R. (2021). A Review of AI for Urban Planning: Towards Building Sustainable Smart Cities. 937–944.

Jiang, H., Geertman, S., & Witte, P. (2020). Avoiding the planning support system pitfalls? What smart governance can learn from the planning support system implementation gap. Environment and Planning B: Urban Analytics and City Science, 2399808320934824. https://doi.org/10/gg4q9w

Jiang, M. (2020). Urban Planning Reform Trend Based on Artificial Intelligence. 1533(3), 032020.

Joyce, K., Smith-Doerr, L., Alegria, S., Bell, S., Cruz, T., Hoffman, S. G., Noble, S. U., & Shestakofsky, B. (2021). Toward a Sociology of Artificial Intelligence: A Call for Research on Inequalities and Structural Change. Socius, 7, 2378023121999581. https://doi.org/10/gkm5n8

Jun, D., & Yikui, M. (2009). Intelligent decision support system for road network planning. 4, 139–142.

Kaatz-Dubberke, T., & Kehl, L. (2020). Artificial Intelligence in Urban Development. Federal Ministry for Economic Cooperation and Development (BMZ).

Kamrowska-Załuska, D. (2021). Impact of AI-Based Tools and Urban Big Data Analytics on the Design and Planning of Cities. Land, 10(11), 1209. https://doi.org/10/gpwbf7

Kanafani, A., Khattak, A., & Dahlgren, J. (1994). A planning methodology for intelligent urban transportation systems. Transportation Research Part C: Emerging Technologies, 2(4), 197–215. https://doi.org/10/c8kkf8

Kandel, S., Paepcke, A., Hellerstein, J. M., & Heer, J. (2012). Enterprise Data Analysis and Visualization: An Interview Study. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2917–2926. https://doi.org/10/gd7fz4

Kandogan, E., Balakrishnan, A., Haber, E. M., & Pierce, J. S. (2014). From Data to Insight: Work Practices of Analysts in the Enterprise. IEEE Computer Graphics and Applications, 34(5), 42–50. https://doi.org/10/gpwbf4

Kang, M. H., Choi, H. R., Kim, H. S., & Park, B. J. (2012). Development of a maritime transportation planning support system for car carriers based on genetic algorithm. Applied Intelligence, 36(3), 585–604. https://doi.org/10/c96spc

Kankanhalli, A., Charalabidis, Y., & Mellouli, S. (2019). IoT and AI for Smart Government: A Research Agenda. Government Information Quarterly, 36(2), 304–309. https://doi.org/10/gpkkpp

Karami, Z., & Kashef, R. (2020). Smart transportation planning: Data, models, and algorithms. Transportation Engineering, 2, 100013. https://doi.org/10/gmdnxc

Karvonen, A., Cook, M., & Haarstad, H. (2020). Urban planning and the smart city: Projects, practices and politics. Urban Planning, In-press.

Kassens-Noor, E., & Hintze, A. (2020). Cities of the Future? The Potential Impact of Artificial Intelligence. AI, 1(2), 192–197. https://doi.org/10/gjg2sj

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 5092–5103. https://doi.org/10/b2pj

Ketzler, B., Naserentin, V., Latino, F., Zangelidis, C., Thuvander, L., & Logg, A. (2020). Digital Twins for Cities: A State of the Art Review. Built Environment, 46(4), 547–573. https://doi.org/10/ghqp9b

Khediri, A., Laouar, M. R., & Eom, S. B. (2021). Improving Intelligent Decision Making in Urban Planning: Using Machine Learning Algorithms. International Journal of Business Analytics (IJBAN), 8(3), 40–58. https://doi.org/10/gnbkqz

Khelifa, B., Laouar, M. R., & Eom, S. (2018). Towards an Intelligent Integrated System for Urban Planning Using GIS and Cloud Computing. 26–37.

Kim, I., Choi, J., Teo, E. A. L., & Sun, H. (2020). Development of K-BIM e-Submission prototypical system for the openBIM-based building permit framework. Journal of Civil Engineering and Management, 26(8), 744–756. https://doi.org/10/gmdgv8

Kim, K.-J., & Cho, S.-B. (2006). A Comprehensive Overview of the Applications of Artificial Life. Artificial Life, 12(1), 153–182. https://doi.org/10/b4qpc4

Kim, M. P., & Adams, K. (1990). CGS-DSC: An Expert System for Construction Contract Claims. In T. J. Kim, L. L. Wiggins, & J. R. Wright (Eds.), Expert Systems: Applications to Urban Planning (pp. 181–195). Springer. https://doi.org/10.1007/978-1-4612-3348-0_12

Kim, T. J., Wiggins, L. L., & Wright, J. R. (Eds.). (1990). Expert Systems: Applications to Urban Planning. Springer New York. https://doi.org/10.1007/978-1-4612-3348-0

Kirwan, C. G., & Zhiyong, F. (2020). Smart Cities and Artificial Intelligence: Convergent Systems for Planning, Design, and Operations. Elsevier.

Klein, B., Koenig, R., & Schmitt, G. (2017). Managing urban resilience. Informatik-Spektrum, 40(1), 35–45. https://doi.org/10/gf2hrx

Klosterman, R. E. (1997). Planning Support Systems: A New Perspective on Computer-Aided Planning. Journal of Planning Education and Research, 17(1), 45–54. https://doi.org/10/fs6jgv

Klosterman, R., & Roast, C. (1988). Reviews: Review Essay: Microcomputers and Planning Practice: A Review of the Literature, Artificial Intelligence: An Applications-Oriented Approach. Environment and Planning B: Planning and Design, 15(3), 369–374. https://doi.org/10/gnbkrs

Kocielnik, R., Amershi, S., & Bennett, P. N. (2019). Will You Accept an Imperfect AI? Exploring Designs for Adjusting End-user Expectations of AI Systems. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–14). Association for Computing Machinery. https://doi.org/10.1145/3290605.3300641

Koehler, H., Koenig, R., Kalisch, D., & Steinhoefel, J. (2009). Computer-based methods for a socially sustainable urban and regional planning. Revista Internacional Sostenibilidad, Tecnología y Humanismo, 4, 115–124.

Koenig, R., Miao, Y., Knecht, K., Buš, P., & Mei-Chih, C. (2017). Interactive urban synthesis. 23–41.

Koenig, R., & Schmitt, G. (2016). Backcasting and a new way of command in computational design. CAADence in Architecture. https://doi.org/10/gnbkrd

Komninos, N. (2006). The architecture of intelligent clities: Integrating human, collective and artificial intelligence to enhance knowledge and innovation. 1, 13–20.

König, R., Schmitt, G., Standfest, M., Chirkin, A., & Klein, B. (2017). Cognitive computing for urban planning. In The Virtual and the Real in Planning and Urban Design (pp. 93–111). Routledge.

Kontokosta, C. E. (2018). Urban Informatics in the Science and Practice of Planning. Journal of Planning Education and Research, 0739456X18793716. https://doi.org/10/gg2qhw

Kourtit, K. (n.d.). City intelligence for enhancing urban performance value: A conceptual study on data decomposition in smart cities. Retrieved June 27, 2021, from https://click.endnote.com/viewer?doi=10.1007%2Fs41685-021-00193-9&token=WzEwNjM0NzIsIjEwLjEwMDcvczQxNjg1LTAyMS0wMDE5My05Il0.TUHmNjHyKANKujRfQCsGLlXgy2M

Kourtit, K., Elmlund, P., & Nijkamp, P. (2020). The urban data deluge: Challenges for smart urban planning in the third data revolution. International Journal of Urban Sciences, 24(4), 445–461. https://doi.org/10/ghthjt

Kouziokas, G. N. (2017). The application of artificial intelligence in public administration for forecasting high crime risk transportation areas in urban environment. Transportation Research Procedia, 24, 467–473. https://doi.org/10/gnbkrm

Król, A. (2016). The Application of the Artificial Intelligence Methods for Planning of the Development of the Transportation Network. Transportation Research Procedia, 14, 4532–4541. https://doi.org/10/gmvhf5

Langendorf, R. (1985). Computers and Decision Making. Journal of the American Planning Association, 51(4), 422–433. https://doi.org/10/fpm9bq

Lapucci, A., Lombardo, S., Petri, M., & Rotonda, M. (2009). A Participative Multi Agent System for Urban Sustainable Mobility. In B. Murgante, G. Borruso, & A. Lapucci (Eds.), Geocomputation and Urban Planning (pp. 255–279). Springer. https://doi.org/10.1007/978-3-540-89930-3_15

Laurini, R. (2017). Towards smart urban planning through knowledge infrastructure. Diamond, 75–80.

Law, P.-M., Endert, A., & Stasko, J. (2020a). Characterizing Automated Data Insights. 2020 IEEE Visualization Conference (VIS), 171–175. https://doi.org/10/gk8brf

Law, P.-M., Endert, A., & Stasko, J. (2020b). What are Data Insights to Professional Visualization Users? 2020 IEEE Visualization Conference (VIS), 181–185. https://doi.org/10/gk8brg

Lazić, M., & Perišić, A. (2015). Theoretical Framework of Computer Cognition for Use in Urban Design Process. South East European Journal of Architecture and Design, 2015, 1–6. https://doi.org/10/gnm5dt

Leach, N. (2018). Design in THE age of artificial intelligence. Landscape Architecture Frontiers, 6(2), 8–20. https://doi.org/10/gnm5dk

Leao, S. Z., van den Nouwelant, R., Shi, V., Han, H., Praharaj, S., & Pettit, C. J. (2021). A rapid analytics tool to map the effect of rezoning on property values. Computers, Environment and Urban Systems, 86, 101572. https://doi.org/10/ghszf4

Leary, M. E. (n.d.). Knowledge and Reasoning in Development Control and Urban Design: An Expert Systems Approach | EndNote Click. Retrieved March 29, 2021, from https://click.endnote.com/viewer?doi=10.1068%2Fb150383&token=WzEwNjM0NzIsIjEwLjEwNjgvYjE1MDM4MyJd.ePU81DLCg49CHe8MPgVpcQnEVkQ

Lee, D. B. (1973). Requiem for Large-Scale Models. Journal of the American Institute of Planners, 39(3), 163–178. https://doi.org/10/c563hw

Lee, S.-T., Hsieh, Y.-H., & Wu, C.-W. (2012). The application of artificial intelligence methods in sustainable rural planning.

Lee, Y.-C., & Wiggins, L. L. (1990). MEDIATOR: An Expert System to Facilitate Environmental Dispute Resolution. In T. J. Kim, L. L. Wiggins, & J. R. Wright (Eds.), Expert Systems: Applications to Urban Planning (pp. 197–221). Springer. https://doi.org/10.1007/978-1-4612-3348-0_13

Li, L., Zhang, H., Wang, X., Lu, W., & Mu, Z. (2010). Urban transit coordination using an artificial transportation system. IEEE Transactions on Intelligent Transportation Systems, 12(2), 374–383. https://doi.org/10/dgb8tc

Li, X., Chen, Y., Liu, X., Xu, X., & Chen, G. (2017). Experiences and issues of using cellular automata for assisting urban and regional planning in China. International Journal of Geographical Information Science, 31(8), 1606–1629. https://doi.org/10/gdrbsk

Li, X., Lao, C., Liu, X., & Chen, Y. (2011). Coupling urban cellular automata with ant colony optimization for zoning protected natural areas under a changing landscape. International Journal of Geographical Information Science, 25(4), 575–593. https://doi.org/10/cmm8wv

Liang, Y., Zhou, Z., & Li, X. (2019). Dynamic of regional planning and sustainable development in the pearl river delta, china. Sustainability, 11(21), 6074. https://doi.org/10/gmc673

Lian-huan, Z. (2021). Research on Grid Planning Method of Distribution Network Based on Artificial Intelligence Technology. 387, 91.

Liao, Q. V., Gruen, D., & Miller, S. (2020). Questioning the AI: Informing Design Practices for Explainable AI User Experiences. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10/ghppvp

Lichfield, N., Barbanente, A., Borri, D., Khakee, A., & Prat, A. (1998). Evaluation in planning: Facing the challenge of complexity (Vol. 47). Springer Science & Business Media.

Lim, C., Kim, K.-J., & Maglio, P. P. (2018). Smart cities with big data: Reference models, challenges, and considerations. Cities, 82, 86–99. https://doi.org/10/gfgvj9

Lin, J., & Li, X. (2019). Large-scale ecological red line planning in urban agglomerations using a semi-automatic intelligent zoning method. Sustainable Cities and Society, 46, 101410. https://doi.org/10/gjd9bt

Lin, L.-C., & Watada, J. (2010). Building a Decision Support System for Urban Design Based on the Creative City Concept. In Handbook on Decision Making (pp. 317–346). Springer.

Lindgren, I. (n.d.). Exploring the Use of Robotic Process Automation in Local Government. 10.

Liou, Y. I. (1990). Knowledge acquisition: Issues, techniques, and methodology. Proceedings of the 1990 ACM SIGBDP Conference on Trends and Directions in Expert Systems, 212–236. https://doi.org/10/cfdjkj

Little, J. C., Hester, E. T., Elsawah, S., Filz, G. M., Sandu, A., Carey, C. C., Iwanaga, T., & Jakeman, A. J. (2019). A tiered, system-of-systems modeling framework for resolving complex socio-environmental policy issues. Environmental Modelling & Software, 112, 82–94. https://doi.org/10/ggr73q

LIU, L., & WANG, H. (2019). APPLICATION OF COMPUTER VISION IN URBAN STUDIES: REVIEW AND PROSPECT. City Planning Review, 01.

Liu, S. (n.d.). Artificial Intelligence to Assist Urban Planning.

Liu, Y., Lin, Y., Yeoh, J. K. W., Chua, D. K. H., Wong, L. W. C., Ang, M. H., Lee, W. L., & Chew, M. Y. L. (2021). Framework for Automated UAV-Based Inspection of External Building Façades. In B. T. Wang & C. M. Wang (Eds.), Automating Cities: Design, Construction, Operation and Future Impact (pp. 173–194). Springer. https://doi.org/10.1007/978-981-15-8670-5_7

Llach, D. C. (2021). Sculpting spaces of possibility: Brief history and prospects of artificial intelligence in design. In The Routledge Companion to Artificial Intelligence in Architecture (pp. 13–28). Routledge.

Loc, H. H., Do, Q. H., Cokro, A., & Irvine, K. N. (2020). Deep neural network analyses of water quality time series associated with water sensitive urban design (WSUD) features. Journal of Applied Water Engineering and Research, 8(4), 313–332. https://doi.org/10/gnm5dq

Lock, O., Bain, M., & Pettit, C. (2021). Towards the collaborative development of machine learning techniques in planning support systems – a Sydney example. Environment and Planning B: Urban Analytics and City Science, 48(3), 484–502. https://doi.org/10.1177/2399808320939974

Loke, S. W. (2021). The Automated City: Internet of Things and Ubiquitous Artificial Intelligence.

Long, Y., Shen, Y., & Jin, X. (2015). Mapping Block-Level Urban Areas for All Chinese Cities. Annals of the Association of American Geographers, 106, 1–18. https://doi.org/10/gkr4nk

Lucic, P., & Teodorovic, D. (2002). Transportation modeling: An artificial life approach. 14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings., 216–223. https://doi.org/10/fkb7p3

Luusua, A., & Ylipulli, J. (2020a). Artificial intelligence and risk in design. 1235–1244.

Luusua, A., & Ylipulli, J. (2020b). Urban AI: Formulating an Agenda for the Interdisciplinary Research of Artificial Intelligence in Cities. 373–376.

Luusua, A., & Ylipulli, J. (2021). Nordic Cities Meet Artificial Intelligence: City Officials’ Views on Artificial Intelligence and Citizen Data in Finland. C&T ’21: Proceedings of the 10th International Conference on Communities & Technologies – Wicked Problems in the Age of Tech, 51–60. https://doi.org/10/gkzmm6

Lyu, K., Hu, M., Du, J., & Sugumaran, V. (1 C.E.). AI-Based Services for Smart Cities and Urban Infrastructure. In Https://services-igi-global-com.ezproxy.lib.vt.edu/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-5024-3. IGI Global. https://www-igi-global-com.ezproxy.lib.vt.edu/gateway/book/244652

Mackay, J. M., & Elam, J. J. (1992). A Comparative Study of How Experts and Novices Use a Decision Aid to Solve Problems in Complex Knowledge Domains. Information Systems Research, 3(2), 150–172. https://doi.org/10/b92cp9

Magdy, H., & Eldaly, H. (2020). Applying Swarm Intelligence in Architectural Design. In Architecture and Urbanism: A Smart Outlook (pp. 77–87). Springer.

Magnanti, T. L., & Wong, R. T. (1984). Network design and transportation planning: Models and algorithms. Transportation Science, 18(1), 1–55. https://doi.org/10/d8s7hn

Maity, G., Roy, S. K., & Verdegay, J. L. (2020). Analyzing multimodal transportation problem and its application to artificial intelligence. Neural Computing and Applications, 32(7), 2243–2256. https://doi.org/10/gnbkrk

Markopoulou, A. (2020). Smart who? Collective intelligence urban design models. Architectural Design, 90(3), 122–127. https://doi.org/10/gnm5dw

Markusiewicz, J. (2017). Human-driven and machine-driven decisions in urban design and architecture-A comparison of two different methods in finding solutions to a complex problem.

McMeel, D. (2019). Algorithms, AI and Architecture-Notes on an extinction.

Meeran, A., & Conrad Joyce, S. (2020). Machine Learning for Comparative Urban Planning at Scale: An Aviation Case Study.

Meijer, A., & Thaens, M. (2018). Urban Technological Innovation: Developing and Testing a Sociotechnical Framework for Studying Smart City Projects. Urban Affairs Review, 54(2), 363–387. https://doi.org/10/gf2dnf

Memon, M. A., & Archimède, B. (2013). A multi-agent distributed framework for collaborative transportation planning. IFAC Proceedings Volumes, 46(9), 1370–1375. https://doi.org/10/gnbkqv

Merchant, A. N. (1990). Urban design expert system. University of Cincinnati.

Mes, M., van der Heijden, M., & Schuur, P. (2013). Interaction between intelligent agent strategies for real-time transportation planning. Central European Journal of Operations Research, 21(2), 337–358. https://doi.org/10/bcxkt8

Messaoudi, M., Nawari, N. O., & Srinivasan, R. (2019). Virtual Building Permitting Framework for the State of Florida: Data Collection and Analysis. 328–335. https://doi.org/10/gmdgv7

Miao, Y., Koenig, R., & Knecht, K. (2017). City Afforestation: Abstracting the Urban Geometries into Tree Structures for Urban Fabric Optimization. WedA51_35118.

Miao, Y., Koenig, R., & Knecht, K. (2020). The Development of Optimization Methods in Generative Urban Design: A Review. SimAUD2020.

Miao, Y., Koenig, R., Knecht, K., Konieva, K., Buš, P., & Chang, M.-C. (2018). Computational urban design prototyping: Interactive planning synthesis methods—A case study in Cape Town. International Journal of Architectural Computing, 16(3), 212–226. https://doi.org/10/ggtt2h

Michaelsen, E., Gabler, R., & Scherer-Negenborn, N. (2015). TOWARDS UNDERSTANDING URBAN PATTERNS AND STRUCTURES. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. https://doi.org/10/gcdc68

Mikhaylov, S. J., Esteve, M., & Campion, A. (2018). Artificial intelligence for the public sector: Opportunities and challenges of cross-sector collaboration. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2128), 20170357. https://doi.org/10/gnbkqs

Milojevic-Dupont, N., & Creutzig, F. (2021). Machine learning for geographically differentiated climate change mitigation in urban areas. Sustainable Cities and Society, 64, 102526. https://doi.org/10/gnbkq3

Milton, R., & Roumpani, F. (2019). Accelerating urban modelling algorithms with artificial intelligence. 1, 105–116.

Min, K., Yoon, M., & Furuya, K. (2019). A Comparison of a smart city’s trends in urban planning before and after 2016 through keyword network analysis. Sustainability, 11(11), 3155. https://doi.org/10/ggvkr6

Moere, A. V., & Hill, D. (2012). Designing for the Situated and Public Visualization of Urban Data. Journal of Urban Technology, 19(2), 25–46. https://doi.org/10/gf65fp

Monteiro, A. C. B., França, R. P., Arthur, R., & Iano, Y. (2022). An Overview of Artificial Intelligence Technology Directed at Smart Sensors and Devices from a Modern Perspective. In U. Singh, A. Abraham, A. Kaklauskas, & T.-P. Hong (Eds.), Smart Sensor Networks: Analytics, Sharing and Control (pp. 3–26). Springer International Publishing. https://doi.org/10.1007/978-3-030-77214-7_1

Mrówczyńska, M., Sztubecka, M., Skiba, M., Bazan-Krzywoszańska, A., & Bejga, P. (2019). The Use of Artificial Intelligence as a Tool Supporting Sustainable Development Local Policy. Sustainability, 11(15), 4199. https://doi.org/10/gmdgv2

Muleta, M. K., & Nicklow, J. W. (2005). Decision Support for Watershed Management Using Evolutionary Algorithms. Journal of Water Resources Planning and Management, 131(1), 35–44. https://doi.org/10/c6hdtp

Muntañola Thornberg, J., Saura Carulla, M., Molarinho, S., Nathan, J., Martin, Y., & Espósito, F. (2020). New theories of urban forms and their impact upon architectural education, urban design and social behavior on cities. 1–9.

Murgante, B., Borruso, G., & Lapucci, A. (2009). Geocomputation and urban planning. In Geocomputation and urban planning (pp. 1–17). Springer.

Nagel, K., & Raney, B. (2003). Transportation planning II: Complex systems applications for transportation planning. The Real and Virtual Worlds of Spatial Planning.

Navinchandra, D. (1993). Observations on the role of artificial intelligence techniques in geographic information processing. In Expert Systems in Environmental Planning (pp. 85–118). Springer.

Nawari, N. O., & Ravindran, S. (2019). Blockchain and Building Information Modeling (BIM): Review and Applications in Post-Disaster Recovery. Buildings, 9(6), 149. https://doi.org/10/ggjjd9

Nematollahi, M. A., Shahbazi, S., & Nabian, N. (2019). Application of AI in Urban Design. In Computer Vision and Audition in Urban Analysis Using the Remorph Framework (pp. 1–12). Springer.

Nguyen, K. A., Stewart, R. A., Zhang, H., Sahin, O., & Siriwardene, N. (2018). Re-engineering traditional urban water management practices with smart metering and informatics. Environmental Modelling & Software, 101, 256–267. https://doi.org/10/gc2tfz

Nice, K. A., Thompson, J., Wijnands, J. S., Aschwanden, G. D., & Stevenson, M. (2019). The’Paris-end’of town? Urban typology through machine learning. ArXiv Preprint ArXiv:1910.03220.

Nikitas, A., Michalakopoulou, K., Njoya, E. T., & Karampatzakis, D. (2020). Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era. Sustainability, 12(7), 2789. https://doi.org/10/gmdn6v

Ning Wu, & Silva, E. A. (2010). Artificial Intelligence Solutions for Urban Land Dynamics: A Review. Journal of Planning Literature, 24(3), 246–265. https://doi.org/10/cmjw7b

Nisha, B., & Olney, B. (2017). Spatial Cognition with Virtual Reality. Anthologies, Conscious Cities: Bridging Neuroscience, Architecture, and Technology, 2, Article 2.

Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, 53, 102104. https://doi.org/10.1016/j.ijinfomgt.2020.102104

Nosratabadi, S., Mosavi, A., Keivani, R., Ardabili, S., & Aram, F. (2020). State of the Art Survey of Deep Learning and Machine Learning Models for Smart Cities and Urban Sustainability. ArXiv:2010.02670 [Econ, q-Fin], 101, 228–238. https://doi.org/10/gmdgvz

Nouri, H., Ildoromi, A., Sepehri, M., & Artimani, M. (2019). Comparing Three Main Methods of Artificial Intelligence in Flood Estimation in Yalphan Catchment. Geography and Environmental Planning, 29(4), 35–50.

Nowakowski, P., Szwarc, K., & Boryczka, U. (2018). Vehicle route planning in e-waste mobile collection on demand supported by artificial intelligence algorithms. Transportation Research Part D: Transport and Environment, 63, 1–22. https://doi.org/10/gd73n7

Ocalir-Akunal, E. V. (2015). Using Decision Support Systems for Transportation Planning Efficiency. IGI Global.

Ocalir-Akunal, E. V. (2016). Decision support systems in transport planning. Procedia Engineering, 161, 1119–1126. https://doi.org/10/gnbkrr

Odolini, C. (2019). Resilient Urban Design. Belgrade and Florence: Reconnect the Waters to the City. In Sustainable Building for a Cleaner Environment (pp. 187–197). Springer.

Ogievetsky, J. H. and M. B. and V. (n.d.). A tour through the visualization zoo. Retrieved December 21, 2021, from https://click.endnote.com/viewer?doi=10.1145%2F1743546.1743567&token=WzEwNjM0NzIsIjEwLjExNDUvMTc0MzU0Ni4xNzQzNTY3Il0.UvmZ3guCQngkN570B6iKFKZ32Es

Oladele, A., Vokolkova, V., & Egwurube, J. (2013). Transportation planning through pavement performance prediction modeling for Botswana gravel loss condition. 256, 2976–2982.

Olson, J. R., & Rueter, H. H. (1987). Extracting expertise from experts: Methods for knowledge acquisition. Expert Systems, 4(3), 152–168. https://doi.org/10/dj742h

Openshaw, S. (1993). Some suggestions concerning the development of artificial intelligence tools for spatial modelling and analysis in GIS. In M. M. Fischer & P. Nijkamp (Eds.), Geographic Information Systems, Spatial Modelling and Policy Evaluation (pp. 17–33). Springer. https://doi.org/10.1007/978-3-642-77500-0_2

Ortega-Fernández, A., Martín-Rojas, R., & García-Morales, V. J. (2020). Artificial Intelligence in the Urban Environment: Smart Cities as Models for Developing Innovation and Sustainability. Sustainability, 12(19), 7860. https://doi.org/10/gmdgv4

Ortolano, L., & Perman, C. D. (1990). Applications to Urban Planning: An Overview. In T. J. Kim, L. L. Wiggins, & J. R. Wright (Eds.), Expert Systems: Applications to Urban Planning (pp. 3–13). Springer. https://doi.org/10.1007/978-1-4612-3348-0_1

O’Sullivan, D., & Haklay, M. (2000). Agent-based models and individualism: Is the world agent-based? Environment and Planning A, 32(8), 1409–1425. https://doi.org/10/bzqc77

Page, J., Mörtberg, U., Destouni, G., Ferreira, C., Näsström, H., & Kalantari, Z. (2020). Open-source planning support system for sustainable regional planning: A case study of Stockholm County, Sweden. Environment and Planning B: Urban Analytics and City Science, 2399808320919769. https://doi.org/10/ggtgjc

Paio, A., Reis, J., Santos, F., Lopes, P. F., Eloy, S., & Rato, V. (2011). Emerg. Cities4all: Towards a shape grammar based computational system tool for generating a sustainable and integrated urban design.

Pastorello, G. Z., Medeiros, C. B., de Resende, S. M., & da Rocha, H. A. (2005). Interoperability for GIS document management in environmental planning. In Journal on Data Semantics III (pp. 100–124). Springer.

Pazdur-Czarnowska, A. (2020). The future of public spaces–towards interactive use of artificial intelligence in urban interiors. Przestrzeń i Forma. https://doi.org/10/gnbkq5

Pazos Pérez, R. I. (2017). Blurring the boundaries between real and artificial in architecture and urban design through the use of artificial intelligence.

Pelorosso, R. (2020). Modeling and urban planning: A systematic review of performance-based approaches. Sustainable Cities and Society, 52, 101867. https://doi.org/10/gg49zb

Pelzer, P. (2017). Usefulness of planning support systems: A conceptual framework and an empirical illustration. Transportation Research Part A: Policy and Practice, 104, 84–95. https://doi.org/10/gbz45z

Peng, L., & Ye, Y. (2021). The Application of Artificial Intelligence in Architectural Design and Planning. 792–797.

Peng, X., Liu, P., & Jin, Y. (2019). The Age of Intelligence: Urban Design Thinking, Method Turning and Exploration. 275–284.

Perloff, H. S. (1956). Education of City Planners: Past, Present and Future. Journal of the American Institute of Planners, 22(4), 186–217. https://doi.org/10/fh85fb

Pettit, C., Bakelmun, A., Lieske, S. N., Glackin, S., Hargroves, K. ‘Charlie,’ Thomson, G., Shearer, H., Dia, H., & Newman, P. (2018). Planning support systems for smart cities. City, Culture and Society, 12, 13–24. https://doi.org/10/gc3kbx

Photis, Y. N., & Grekousis, G. (2012). Locational planning for emergency management and response: An artificial intelligence approach. International Journal of Sustainable Development and Planning, 7(3), 372–384. https://doi.org/10/gnbkrv

Pieters, W. (2003). A pragmatic phenomenological approach in environmental planning.

Pinfold, N., & Mokhele, M. (2020). Bridging the gap between technical and social competencies of urban and regional planning through mobile technology: The case of Cape Peninsula University of Technology. TD: The Journal for Transdisciplinary Research in Southern Africa, 16(1), 1–7. https://doi.org/10/gjns2j

Pirbabaei, M. T., Gharehbaglou, M., & Alinam, Z. (2014). Typology of cognitive research methods in urban design studies. Journal of Ciencia e Tecnica Vitivinicola, 20(7), 8–23.

Podrasa, D., Zeile, P., & Neppl, M. (2021). Machine Learning for Land Use Scenarios and Urban Design. 489–498.

Polak, J. (2018). Smart Cities and the New Urban Analytics: Opportunities and Challenges in Urban Transport. In R. Mehmood, B. Bhaduri, I. Katib, & I. Chlamtac (Eds.), Smart Societies, Infrastructure, Technologies and Applications (pp. 95–97). Springer International Publishing. https://doi.org/10/gpwbc3

Polydorides, N. D., & Petropoulos, P. (1989). An expert system for the evaluation of urban plans. Ekistics, 342–347.

Poplin, A., Devisch, O., & de Roo, G. (n.d.). THE VIRTUAL AND THE REAL IN PLANNING AND URBAN DESIGN.

Popov, N. (2010). Generative urban design with cellular automata and agent based modelling.

Portugali, J., Meyer, H., Stolk, E., & Tan, E. (2012). Complexity theories of cities have come of age: An overview with implications to urban planning and design.

Portugali, J., & Stolk, E. (2016). Complexity, cognition, urban planning and design. Post-Proceedings of the 2nd Delft International Conference. Switzerland: Springer. https://doi.org/10/ggtbp8

Pourabdollah, A., Wagner, C., Miller, S., Smith, M., & Wallace, K. (2014). Towards data-driven environmental planning and policy design-leveraging fuzzy logic to operationalize a planning framework. 2230–2237.

Prerau, D. S. (1987). Knowledge Acquisition in the Development of a Large Expert System. AI Magazine, 8(2), 43–43. https://doi.org/10/gpwbf9

Puusepp, R. (2011). Generating circulation diagrams for architecture and urban design using multi-agent systems.

Qiu, J. (2021). Spatial Analysis Method of Urban Design Based on Big Data. CONVERTER, 2021(6), 109–115.

Quan, S. J., Park, J., Economou, A., & Lee, S. (2019). Artificial intelligence-aided design: Smart Design for sustainable city development. Environment and Planning B: Urban Analytics and City Science, 46(8), 1581–1599. https://doi.org/10/ggrx7n

Rahbar, M., MahdaviNejad, M., Bemanian, M., & Davaie-Markazi, A. (2020). Artificial neural network for outlining and predicting environmental sustainable parameters. Journal of Sustainable Architecture and Urban Design, 7(2), 169–182.

Raimbault, J. (2020). Cities as they could be: Artificial life and urban systems. ArXiv Preprint ArXiv:2002.12926.

Rambachan, A., Kleinberg, J., Ludwig, J., & Mullainathan, S. (2020). An Economic Perspective on Algorithmic Fairness. AEA Papers and Proceedings, 110, 91–95. https://doi.org/10/ggwv28

Rehr, D. D. K., & Munteanu, D. (n.d.). The Promise of Robotic Process Automation for the Public Sector. 25.

Reinoso-Bellido, F. J. A.-A. and F. S. C.-S. and R. (n.d.). Demographic and dwelling models by artificial intelligence: Urban renewal opportunities in Spanish coast | EndNote Click. Retrieved December 30, 2021, from https://click.endnote.com/viewer?doi=10.2495%2Fsdp-v13-n7-941-953&token=WzEwNjM0NzIsIjEwLjI0OTUvc2RwLXYxMy1uNy05NDEtOTUzIl0.ZQBRaV3LZPY6JKL8h–cNhKdxUc

Richthofen, A. von. (2019). Transferring Research Knowledge into Urban Design Education. In Future Cities Laboratory: Indicia 02 (pp. 237–243). Lars Müller Publishers.

Rodrigues, A., Grueau, C., Raper, J., & Neves, N. (1998). Environmental planning using spatial agents. Innovations in GIS, 5, 108–118.

Romigioli, K. L. (2015). What is the future of what people call the Smart City?: Redefining the metaphors of Smart City. 한국실내디자인학회 학술대회논문집, 223–226.

Rouhani, S., & Kangari, R. (1990). Landfill Site Selection. In T. J. Kim, L. L. Wiggins, & J. R. Wright (Eds.), Expert Systems: Applications to Urban Planning (pp. 159–169). Springer. https://doi.org/10.1007/978-1-4612-3348-0_10

Saarloos, D., Arentze, T., Borgers, A., & Timmermans, H. (2002). Towards a Local Planning Support System, Introducing the MASQUE Framework.

Sadek, A. W., & Mark, C. (2003). Modular artificial neural networks for solving the inverse transportation planning problem. Transportation Research Record, 1836(1), 37–44. https://doi.org/10/ffs988

Sai, W., & Wang, H. (2021). Optimal design of urban transportation planning based on big data. Environmental Technology & Innovation, 23, 101545. https://doi.org/10/gnbkrq

Sakai, Y. (2017). Bikebump: Collective urban design.

Saleh, H. A., & Allaert, G. (2011). Scientific research based optimisation and geo-information technologies for integrating environmental planning in disaster management. In Remote Sensing of the Changing Oceans (pp. 359–390). Springer.

Salingaros, N. A. (1998). Theory of the urban web. Journal of Urban Design, 3(1), 53–71. https://doi.org/10/chwck4

Santé, I., García, A. M., Miranda, D., & Crecente, R. (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 96(2), 108–122. https://doi.org/10/fws3nv

Sassite, F., Addou, M., & Barramou, F. (2022). Towards a Multi-agents Model for Automatic Big Data Processing to Support Urban Planning. In F. Barramou, E. H. El Brirchi, K. Mansouri, & Y. Dehbi (Eds.), Geospatial Intelligence: Applications and Future Trends (pp. 3–17). Springer International Publishing. https://doi.org/10.1007/978-3-030-80458-9_1

Schmmitt, G., Shuchen, X., & Miao, Y. (2018). The second chance for artificial intelligence in architecture and urban design. Time Archit.

Schneider, S., Fischer, J.-R., & König, R. (2011). Rethinking automated layout design: Developing a creative evolutionary design method for the layout problems in architecture and urban design. In Design computing and cognition’10 (pp. 367–386). Springer.

Scholten, H. J., & Stillwell, J. (2013). Geographical information systems for urban and regional planning (Vol. 17). Springer Science & Business Media.

See, S. (2018). Artificial Intelligence Computing for a Smart City. In R. Mehmood, B. Bhaduri, I. Katib, & I. Chlamtac (Eds.), Smart Societies, Infrastructure, Technologies and Applications (pp. 6–8). Springer International Publishing. https://doi.org/10/gpwbc4

Sehested, K. (2009). Urban Planners as Network Managers and Metagovernors. Planning Theory & Practice, 10(2), 245–263. https://doi.org/10/bdcjnx

Selby, K. C. D. and J. D. (2019, February 7). How technological progress can cause urban fragility. Brookings. https://www.brookings.edu/blog/techtank/2019/02/07/how-technological-progress-can-cause-urban-fragility/

Šelmić, M., Teodorović, D., & Vukadinović, K. (2010). Locating inspection facilities in traffic networks: An artificial intelligence approach. Transportation Planning and Technology, 33(6), 481–493. https://doi.org/10/dtzj7v

Shahi, K., McCabe, B. Y., & Shahi, A. (2019). Framework for Automated Model-Based e-Permitting System for Municipal Jurisdictions. Journal of Management in Engineering, 35(6), 04019025. https://doi.org/10/gh599x

Shao, J., Yang, L., Peng, L., Chi, T., & Wang, X. (2015). An Improved Artificial Bee Colony-Based Approach for Zoning Protected Ecological Areas. PLOS ONE, 10(9), e0137880. https://doi.org/10/gmcq7p

Sharma, A., & Zheng, Z. (2021). Connected and Automated Vehicles: Opportunities and Challenges for Transportation Systems, Smart Cities, and Societies. In B. T. Wang & C. M. Wang (Eds.), Automating Cities: Design, Construction, Operation and Future Impact (pp. 273–296). Springer. https://doi.org/10.1007/978-981-15-8670-5_11

Sharma, G. D., Yadav, A., & Chopra, R. (2020). Artificial intelligence and effective governance: A review, critique and research agenda. Sustainable Futures, 2, 100004. https://doi.org/10/gnnt45

Shen, J., Liu, C., Ren, Y., & Zheng, H. (2020). Machine Learning Assisted Urban Filling.

Shen, J., Saini, P. K., & Zhang, X. (2021). Machine Learning and Artificial Intelligence for Digital Twin to Accelerate Sustainability in Positive Energy Districts. Data-Driven Analytics for Sustainable Buildings and Cities, 411–422. https://doi.org/10/gnbkq4

Shen, Z., Kawakami, M., & Kawamura, I. (2009). Geosimulation model using geographic automata for simulating land-use patterns in urban partitions. Environment and Planning B: Planning and Design, 36(5), 802–823. https://doi.org/10/fbn2dz

Sheng, Q., Chen, Z., Karimi, K., Lu, A., & Min, S. (2018). The Application of Space Syntaxmodelling in Data-based Urban Design: An Example of Chaoyang Square Renewal in Jilin City. Landscape Architecture Frontiers, 6(2), 102–113. https://doi.org/10/gnm5dm

Sheu, J.-S., & Chen-Yin, H. (2019). Combining Cloud Computing and Artificial Intelligence Scene Recognition in Real-time Environment Image Planning Walkable Area. Advances in Technology Innovation, 5(1), 10.

Shneiderman, B. (2020). Human-Centered Artificial Intelligence: Reliable, Safe & Trustworthy. International Journal of Human–Computer Interaction, 36(6), 495–504. https://doi.org/10/ghhx57

Silva, E. A. (2004). The DNA of our regions: Artificial intelligence in regional planning. Futures, 36(10), 1077–1094. https://doi.org/10/bdv8th

Simon, H. A. (1996). The Sciences of the Artificial, third edition. MIT Press.

Singh, R. R. (2004). Collaborative Urban Information Systems: A Web Services approach. 186.

Sivramkrishna, S., & Panigrahi, R. (2003). Articulating Uneven Regional Development: Artificial intelligence as a tool in development planning. Journal of Human Development, 4(3), 437–456. https://doi.org/10/fsm3pq

Smith, B. W. (2020). Ethics of artificial intelligence in transport. Bryant Walker Smith, Ethics of Artificial Intelligence in Transport, in The Oxford Handbook of Ethics of Artificial Intelligence (Markus Dubber, Frank Pasquale & Sunit Das, Eds.

Sohn, K. (2021). AI-Based Transportation Planning and Operation.

Soomro, K., Bhutta, M. N. M., Khan, Z., & Tahir, M. A. (2019). Smart city big data analytics: An advanced review. WIREs Data Mining and Knowledge Discovery, 9(5), e1319. https://doi.org/10/ghcf6t

Soto, V., & Frías-Martínez, E. (2011). Automated land use identification using cell-phone records. Proceedings of the 3rd ACM International Workshop on MobiArch – HotPlanet ’11, 17. https://doi.org/10/dtwb35

Sousa, V., Matos, J. P., & Matias, N. (2014). Evaluation of artificial intelligence tool performance and uncertainty for predicting sewer structural condition. Automation in Construction, 44, 84–91. https://doi.org/10/f58zmj

Soyinka, O., & Chiaradia, A. (2021). Visual Analytics of Urban Informality and Infrastructure Planning with Tableau for Sustainable Urban Design Research Strategies in Lagos Metropolis. 596–607.

Sprenger, R., & Monch, L. (2008). A simulation framework for assessing the performance of cooperative transportation planning algorithms. 2769–2776.

Stathopoulos, A., & Karlaftis, M. G. (2003). A multivariate state space approach for urban traffic flow modeling and prediction. Transportation Research Part C: Emerging Technologies, 11(2), 121–135. https://doi.org/10/bshn9t

Steenson, M. W. (2018). Why architecture and artificial intelligence? XRDS: Crossroads, The ACM Magazine for Students, 24(3), 16–19. https://doi.org/10/gg9ncj

Steger, W. S. (1982). An assessment of computerized planning models and data bases. Computers, Environment and Urban Systems, 7(1), 65–81. https://doi.org/10/bkq3bf

Stojanovski, T., Samuels, I., Partanen, J., & Peters, C. (2020). Viewpoint: City Information Modelling (CIM) and Digitizing Urban Design Practices. In Built Environment (Vol. 46). https://doi.org/10.2148/benv.46.4.637

Suma, S., Mehmood, R., & Albeshri, A. (2018). Automatic Event Detection in Smart Cities Using Big Data Analytics. In R. Mehmood, B. Bhaduri, I. Katib, & I. Chlamtac (Eds.), Smart Societies, Infrastructure, Technologies and Applications (pp. 111–122). Springer International Publishing. https://doi.org/10/gpwbc2

Suma, S., Mehmood, R., Albugami, N., Katib, I., & Albeshri, A. (2017). Enabling next generation logistics and planning for smarter societies. Procedia Computer Science, 109, 1122–1127. https://doi.org/10/gnbkqr

Sun, N. (2021). Intelligent Transportation System Planning in the Age of Artificial Intelligence. 253, 01036.

Sun, T. (2020). Synthesizing 3D morphology from a collection of urban design concepts.

Suresh, H., & Guttag, J. V. (2021). A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle. Equity and Access in Algorithms, Mechanisms, and Optimization, 1–9. https://doi.org/10/gns2sx

Taber, J. T., Balling, R., Brown, M. R., Day, K., & Meyer, G. A. (1999). Optimizing transportation infrastructure planning with a multiobjective genetic algorithm model. Transportation Research Record, 1685(1), 51–56. https://doi.org/10/d5f3gk

Talhelm, D. R., & Frobom, A. H. (1997). Community Options Model): Using Artificial Intelligence for Transportation Planning and Community Decision Making.

Tanic, E. (1986). Urban planning and artificial intelligence: The URBYS system. Computer, Environment and Urban Systems, 10, 135–146. https://doi.org/10/bdvts4

te Brömmelstroet, M. (2017). Towards a pragmatic research agenda for the PSS domain. Transportation Research Part A: Policy and Practice, 104, 77–83. https://doi.org/10.1016/j.tra.2016.05.011

Teodorovic, D. (2003). Transport modeling by multi-agent systems: A swarm intelligence approach. Transportation Planning and Technology, 26(4), 289–312. https://doi.org/10/bq6jk3

Teodorović, D. (2008). Swarm intelligence systems for transportation engineering: Principles and applications. Transportation Research Part C: Emerging Technologies, 16(6), 651–667. https://doi.org/10/ddfwtk

Tewdwr-Jones, M., & Goddard, J. (2014). A future for cities? Building new methodologies and systems for urban foresight. The Town Planning Review, 85(6), 773–794. https://doi.org/10/ghtkdz

Thakuriah, P. (Vonu), Tilahun, N., & Zellner, M. (Eds.). (2017). Seeing Cities Through Big Data: Research, Methods and Applications in Urban Informatics. Springer International Publishing. https://doi.org/10.1007/978-3-319-40902-3

TIERNEY, T., FELDMAN, B., HANDY, K., MARSHALL, T., PERERA, D., & TIERNEY, G. (n.d.). Intelligent Infrastructure: Mobile Networks as Tactical Transportation.

Timilsina, S., Sharma, S., & Aryal, J. (2019). Mapping urban trees within cadastral parcels using an object-based convolutional neural network. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 111–117. https://doi.org/10/gnbkrb

Tobin, R. (1989). Knowledge-based systems in development planning and control. Ekistics, 331–335.

Tong, X., & Feng, Y. (2019). How current and future urban patterns respond to urban planning? An integrated cellular automata modeling approach. Cities, 92, 247–260. https://doi.org/10/gjd877

Tracz, M., & Wawrzynkiewicz, B. (1993). Knowledge acquisition from multiple experts: A Case of Transport Planning in Poland. In Expert Systems in Environmental Planning (pp. 261–274). Springer.

Tunçer, B. (2020). Augmenting Reality:(Big‐) Data‐informed Urban Design and Planning. Architectural Design, 90(3), 52–59. https://doi.org/10/ggtt6c

Turkienicz, B., Gonçalves, B. B., & Grazziotin, P. (2008). CityZoom: A visualization tool for the assessment of planning regulations. International Journal of Architectural Computing, 6(1), 79–95. https://doi.org/10/dq8dq4

Ülengin, F., & Ilker Topcu, Y. (2000). Knowledge-Based Decision Support Systems Techniques and Their Application in Transportation Planning Systems. In C. T. Leondes (Ed.), Knowledge-Based Systems (pp. 1403–1429). Academic Press. https://doi.org/10.1016/B978-012443875-0/50042-2

Ullah, Z., Al-Turjman, F., Mostarda, L., & Gagliardi, R. (2020). Applications of Artificial Intelligence and Machine learning in smart cities. Computer Communications, 154, 313–323. https://doi.org/10/ggwf8b

Urban, A., Hick, D., Noennig, J. R., & Kammer, D. (2021). With a Little Help From AI: Pros and Cons of AI in Urban Planning and Participation. International Journal of Urban Planning and Smart Cities (IJUPSC), 2(2), 19–33. https://doi.org/10/gnbkqw

Varian, H. (2019). 16. Artificial Intelligence, Economics, and Industrial Organization. In 16. Artificial Intelligence, Economics, and Industrial Organization (pp. 399–422). University of Chicago Press. https://doi.org/10.7208/9780226613475-018

Verma, D., Jana, A., & Ramamritham, K. (2019). Artificial Intelligence and Human Senses for the Evaluation of Urban Surroundings. 852–857.

Villa, F., Ceroni, M., Bagstad, K., Johnson, G., & Krivov, S. (2009). ARIES (Artificial Intelligence for Ecosystem Services): A new tool for ecosystem services assessment, planning, and valuation. 21–22.

Vinayagam, A., Kavitha, C., & Thangadurai, K. (2016). Multi Model Air Pollution Estimation for Environmental Planning Using Data Mining. International Journal of Science and Research, 3, 332–335.

Vollmer, S., Mateen, B. A., Bohner, G., Király, F. J., Ghani, R., Jonsson, P., Cumbers, S., Jonas, A., McAllister, K. S. L., Myles, P., Grainger, D., Birse, M., Branson, R., Moons, K. G. M., Collins, G. S., Ioannidis, J. P. A., Holmes, C., & Hemingway, H. (2020). Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ, 368, l6927. https://doi.org/10.1136/bmj.l6927

Wachowicz, M., Ying, X., & Ligtenberg, A. (2005). Using multi-agent systems for GKD process tracking and steering: The land use change explorer. In Exploring Geovisualization (pp. 223–242). Elsevier.

Wang, B. T. (2021). The Machine Metropolis: Introduction to the Automated City. In B. T. Wang & C. M. Wang (Eds.), Automating Cities: Design, Construction, Operation and Future Impact (pp. 1–21). Springer. https://doi.org/10.1007/978-981-15-8670-5_1

Wang, D., Andres, J., Weisz, J. D., Oduor, E., & Dugan, C. (2021). AutoDS: Towards Human-Centered Automation of Data Science. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1–12). Association for Computing Machinery. https://doi.org/10.1145/3411764.3445526

Wang, D., Fu, Y., Wang, P., Huang, B., & Lu, C.-T. (2020). Reimagining City Configuration: Automated Urban Planning via Adversarial Learning. 497–506.

Wang, J. (2021). Development trend of urban design in “digital age”: Pan-dimensionality and individual-ubiquity. Frontiers of Structural and Civil Engineering, 1–7.

Wang, J., Cao, S.-J., & Yu, C. W. (2021). Development trend and challenges of sustainable urban design in the digital age. https://doi.org/10/gnm5dv

Wang, S., & Cao, J. (2021). AI and deep learning for urban computing. In Urban Informatics (pp. 815–844). Springer.

Wang, S., Deng, Z., Liu, Z., Zhao, N., Zhang, X., & Liu, J. (2020). The achievements and challenges of planning support science in e-planning in China. Handbook of Planning Support Science. https://www.elgaronline.com/view/edcoll/9781788971072/9781788971072.00022.xml

Wang, Y., & Wang, L. (1996). Applications of Artificial Intelligence in GIS to Urban Planning for Earthquake Disaster Mitigation. In Post-Earthquake Rehabilitation and Reconstruction (pp. 85–95). Elsevier.

Wang, Y., & Zou, Z. (2010). Spatial decision support system for urban planning: Case study of Harbin City in China. Journal of Urban Planning and Development, 136(2), 147–153. https://doi.org/10/bf95pw

Warren, R. (n.d.). The Future of the Future in Planning: Appropriating Cyberpunk Visions of the City. Retrieved December 22, 2021, from https://click.endnote.com/viewer?doi=10.1177%2F0739456x9801800105&token=WzEwNjM0NzIsIjEwLjExNzcvMDczOTQ1Nng5ODAxODAwMTA1Il0.u0uy1yjZX2313_u01OhxSUcFc_c

Webb, A. (2019). The heuristics of agency: On computation, big data & urban design. Int Rob Auto J, 5(3), 121–126.

Weise, T., Podlich, A., Reinhard, K., Gorldt, C., & Geihs, K. (2009). Evolutionary freight transportation planning. 768–777.

Wenskovitch, J., & North, C. (2020). Interactive Artificial Intelligence: Designing for the “Two Black Boxes” Problem. Computer, 53(8), 29–39. https://doi.org/10/gpwbfw

White, M., Street, S., & Campus, M. C. (2007). The plan is an inadequate tool for planning: Enhancing the urban design process through the use of 3D+ digital tools directed towards sustainability. Forum applicationSustainabletheory urban development practice proceedings.

White, R. (1989). The artificial intelligence of urban dynamics: Neural network modelling of urban structure. Centre for Urban and Community Studies, University of Toronto. http://www.citiescentre.utoronto.ca/Assets/Cities+Centre+Digital+Assets/pdfs/publications/Research+Papers/170+White.pdf

Wiener, N. (2019). Cybernetics or Control and Communication in the Animal and the Machine, Reissue of the 1961 second edition. MIT Press.

Wiggins, L. L., Han, S.-Y., Perman, C. D., & Lee, Y.-C. (1990). Expert Systems Technology. In T. J. Kim, L. L. Wiggins, & J. R. Wright (Eds.), Expert Systems: Applications to Urban Planning (pp. 15–38). Springer. https://doi.org/10.1007/978-1-4612-3348-0_2

Williamson, B. (2014). Knowing public services: Cross-sector intermediaries and algorithmic governance in public sector reform. Public Policy and Administration, 29(4), 292–312. https://doi.org/10.1177/0952076714529139

Witlox, F. (2005). Expert systems in land-use planning: An overview. Expert Systems with Applications, 29(2), 437–445. https://doi.org/10/fmp745

Wright, J. R. (1990). ISIS: Toward an Integrated Spatial Information System. In T. J. Kim, L. L. Wiggins, & J. R. Wright (Eds.), Expert Systems: Applications to Urban Planning (pp. 43–66). Springer. https://doi.org/10.1007/978-1-4612-3348-0_3

Wright, J. R., Wiggins, L. L., Jain, R. K., & Kim, T. J. (2012). Expert systems in environmental planning. Springer Science & Business Media.

Wu, N., & Silva, E. A. (2013). Selecting artificial intelligence urban models using waves of complexity. Proceedings of the Institution of Civil Engineers-Urban Design and Planning, 166(1), 76–90. https://doi.org/10/gnbkq2

Xiang, W. (1993). A GIS/MMP-based coordination model and its application to distributed environmental planning. Environment and Planning B: Planning and Design, 20(2), 195–220. https://doi.org/10/dzcm6g

Xiang, X., Li, Q., Khan, S., Osamah, I., & Khalaf, O. (2021). Urban water resource management for sustainable environment planning using artificial intelligence techniques. Environmental Impact Assessment Review, 86, 106515. https://doi.org/10/gmdgv6

Xirogiannis, G., Stylianidis, O., & Stefanou, J. (2006). Intelligent decision support of urban design. Journal of Architectural and Planning Research, 113–133.

Xu, J., & Li, B. (2019). Application of Case-Based Methods and Information Technology in Urban Design-The Renewal Design of the urban region around Roma Railway Station.

Yamu, C., Poplin, A., Devisch, O., & De Roo, G. (2017). The virtual and the real in planning and urban design: Perspectives, practices and applications. Routledge.

Yang, P. P., & Yamagata, Y. (2020). Urban systems design: Shaping smart cities by integrating urban design and systems science. In Urban Systems Design (pp. 1–22). Elsevier.

Ye, X., Du, J., & Ye, Y. (2021). MasterplanGAN: Facilitating the smart rendering of urban master plans via generative adversarial networks. Environment and Planning B: Urban Analytics and City Science, 23998083211023516. https://doi.org/10/gnm5dn

Ye, X., Wang, S., Lu, Z., Song, Y., & Yu, S. (2021). Towards an AI-driven framework for multi-scale urban flood resilience planning and design. Computational Urban Science, 1(1), 1–12. https://doi.org/10/gnbkrf

Yeh, C.-I., Ritchie, S. G., & Schneider, J. B. (n.d.). Potential Applications of Knowledge-Based Expert Systems in Transportation Planning and Engineering. Transportation Research Record, 7.

Yerlikaya, S., & Erzurumlu, Y. Ö. (2021). Artificial Intelligence in Public Sector: A Framework to Address Opportunities and Challenges. In A. Hamdan, A. E. Hassanien, A. Razzaque, & B. Alareeni (Eds.), The Fourth Industrial Revolution: Implementation of Artificial Intelligence for Growing Business Success (pp. 201–216). Springer International Publishing. https://doi.org/10.1007/978-3-030-62796-6_11

Yigitcanlar, T., Agdas, D., & Degirmenci, K. (2022). Artificial intelligence in local governments: Perceptions of city managers on prospects, constraints and choices. AI & SOCIETY. https://doi.org/10.1007/s00146-022-01450-x

Yigitcanlar, T., Butler, L., Windle, E., Desouza, K. C., Mehmood, R., & Corchado, J. M. (2020). Can building “artificially intelligent cities” safeguard humanity from natural disasters, pandemics, and other catastrophes? An urban scholar’s perspective. Sensors, 20(10), 2988. https://doi.org/10/gg7z9c

Yigitcanlar, T., Corchado, J. M., Mehmood, R., Li, R. Y. M., Mossberger, K., & Desouza, K. (2021). Responsible Urban Innovation with Local Government Artificial Intelligence (AI): A Conceptual Framework and Research Agenda. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 71. https://doi.org/10/gjjbk3

Yigitcanlar, T., & Cugurullo, F. (2020). The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities. Sustainability, 12(20), 8548. https://doi.org/10/gmdgv5

Yigitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6), 1473. https://doi.org/10/ghbbrj

Yigitcanlar, T., Kankanamge, N., Regona, M., Ruiz Maldonado, A., Rowan, B., Ryu, A., Desouza, K. C., Corchado, J. M., Mehmood, R., & Li, R. Y. M. (2020). Artificial Intelligence Technologies and Related Urban Planning and Development Concepts: How Are They Perceived and Utilized in Australia? Journal of Open Innovation: Technology, Market, and Complexity, 6(4), 187. https://doi.org/10/gms35k

Yin, X., Li, J., Kadry, S. N., & Sanz-Prieto, I. (2021). Artificial intelligence assisted intelligent planning framework for environmental restoration of terrestrial ecosystems. Environmental Impact Assessment Review, 86, 106493. https://doi.org/10/gnbkrx

Yu, D. (1999). Public Participation in Urban Design Based on Information Technology.

Yu, G., Hu, M., Dai, Z., Ding, W., Chang, Y., Wang, Y., & Li, Z. (2021). Smart City Service: In K. Lyu, M. Hu, J. Du, & V. Sugumaran (Eds.), Advances in Computational Intelligence and Robotics (pp. 228–256). IGI Global. https://doi.org/10.4018/978-1-7998-5024-3.ch011

Yu, K. H., Zhang, Y., Li, D., Montenegro-Marin, C. E., & Kumar, P. M. (2021). Environmental planning based on reduce, reuse, recycle and recover using artificial intelligence. Environmental Impact Assessment Review, 86, 106492. https://doi.org/10/gkz3s8

Zeng, L., Yu, W., Cui, Y., & Liu, J. (2021). Innovative Method of Urban Planning Based on Intelligent City. 125–128.

Zhang, J., Hua, X.-S., Huang, J., Shen, X., Chen, J., Zhou, Q., Fu, Z., & Zhao, Y. (2019). City brain: Practice of large-scale artificial intelligence in the real world. IET Smart Cities, 1(1), 28–37. https://doi.org/10/gh7wxk

Zhang, Y. (2017). CityMatrix: An urban decision support system augmented by artificial intelligence.

Zheng, H., & Yuan, P. F. (2021). A generative architectural and urban design method through artificial neural networks. Building and Environment, 205, 108178. https://doi.org/10/gnm5dx

Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban Computing: Concepts, Methodologies, and Applications. ACM Transactions on Intelligent Systems and Technology, 5(3), 38:1-38:55. https://doi.org/10/gdwtgd

Zheng, Y., Wu, W., Chen, Y., Qu, H., & Ni, L. M. (2016). Visual Analytics in Urban Computing: An Overview. IEEE Transactions on Big Data, 2(3), 276–296. https://doi.org/10/gfw9m5

Zhiqiang, W. (2018). Artificial intelligence assisted urban planning. Time+ Architecture, 01.

Zhou, J., Liu, T., & Zou, L. (2020). Design of Machine Learning Model for Urban Planning and Management Improvement. International Journal of Performability Engineering, 16(6), 958–967. https://doi.org/10/ghf44p

Zhu, L., Yu, F. R., Wang, Y., Ning, B., & Tang, T. (2018). Big data analytics in intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 20(1), 383–398. https://doi.org/10/gdf4mj

Zimmermann, H.-J. (2004). Computational intelligence and environmental planning. Cybernetics and Systems: An International Journal, 35(5–6), 431–454. https://doi.org/10/czzfgj

This entry was posted in AI, articles, planning, publications. Bookmark the permalink.

Leave a Reply

Your email address will not be published.